Notice of Application for a Planning Permit

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any

designation, distribution or copying of the decurrent is stratly promoted			
The land affected by the application is located at:		L2 PS708283 V11457 F077 8 Wattletree Road, Bunyip VIC 3815	
The application is for a permit to:		Staged subdivision of the land into multiple lots and native vegetation removal	
A permit is required under the following clauses of the planning scheme:			
52.17-1	Remove, destroy or lop native vegetation		
32.08-3	Subdivide land		
APPLICATION DETAILS			
The applicant for the permit is: Nobelius Land Surveyors		Nobelius Land Surveyors	
Application number: T230312		T230312	

You may look at the application and any documents that support the application at the office of the Responsible Authority:

Cardinia Shire Council, 20 Siding Avenue, Officer 3809.

This can be done during office hours and is free of charge.

Documents can also be viewed on Council's website at cardinia.vic.gov.au/advertisedplans or by scanning the QR code.

HOW CAN I MAKE A SUBMISSION?

This application has not been decided. You can still make a submission before a decision has been made. The Responsible Authority will not decide on the application before:

23 September 2025

WHAT ARE MY OPTIONS?

Any person who may be affected by the granting of the permit may object or make other submissions to the responsible authority.

If you object, the Responsible Authority will notify you of the decision when it is issued.

An objection must:

- be made to the Responsible Authority in writing;
- include the reasons for the objection; and
- state how the objector would be affected.

The Responsible Authority must make a copy of every objection available at its office for any person to inspect during office hours free of charge until the end of the period during which an application may be made for review of a decision on the application.

Council initial assessment

Application is here

Notice

Consideration of submissions

Assessment

Decision

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you acknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

ePlanning

Application Summary

Basic Information

Proposed Use	Staged subdivision of the land into 31 lots and removel of native vegetation	
Current Use	Vocant - used for grazing	
Sta Address	8 Westforme Road Burylp 3815	

Contacts

Meetings

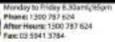
Meeting Type	Officer Name	Date of Meeting
Prix Application	Ben jones	25 Oct 2022

Clvic Centre 20 Siding Avenue, Officer, Victoria

Council's Operations Centre (Depot) Purton Road, Pakenham, Victoria Postal Address Cardinia Shire Council P.O. Box 7, Pakenham WC, 3810

Email: mail@cardinia.vic.gov.au

Monday to Friday 8.30sm-5pm Phone: 1300 787 624 After Hours: 1300 787 624 Fax: 03 5941 3784 This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you anknowledge and agree that you will only use the document for the purpose specified above and that any casemination, distribution or copying of this document is strictly promoted.


Documents Uploaded

Date	Туре	Filename
27-06-2023	Subdivision Han	Tide L2 PS/0828SP dated 27 June 2023.pdf
27-06-2023	Subdivision Plan	00693671860112023062714550001.pdf
27-05-2023	Explanatory Letter	Town Planning Report - 8 Wattkeries .pdf
27-06-2023	Explanatory Letter	Cover letter - 5 Wettletree.pdf
27-06-2023	Additional Document	Wet/letres Road Development Plan Ver 3.pdf
27-05-2023	Additional Document	Wettletree Road FHL Plan + Tree Numbers.pdf
27-06-2023	Additional Document	AS 3559 BAL Assessment Report B Watterner Road Burylp.pdf
27-06-2023	Additional Document	20230329 - Watthetree Rd Burrylp_SWW5.pdf
27-06-2023	Additional Document	22038_Wattetree Rd, Sunyip TAR_Final.pdf
27-05-2023	Additional Document	22032-FLP (Rev Bupdf
27-06-2023	Additional Document	2012 Wattletine Rd F+L Flan.pdf
27-06-2023	Additional Document	8 Wattlefree Rd Bunylip, NVR Report final wm.pdf
27-06-2023	Additional Document	8 Wattletree Rd Arb Report final wm.gdf
27-06-2023	Invoice A223606	Prvoice A2236DE.pdf

Council's Operations Centre (Depot) Purton Road, Fakenhum, Victoria P.O. Box 7, Pakenham VIC, 5810

Emelt:mel@cardina.vic.gov.eu

Civic Centre 20 Siding Avenue, Officer, Victoria

Council's Operations Centre (Depot) Purton Road, Pakenham, Victoria

Postal Address Cardinia Shire Council P.O. Box 7, Pakenham VIC, 3810

Email: mail@cardinia.vic.gov.au

Monday to Friday 8.30am-5pm Phone: 1300 787 624 After Hours: 1300 787 624 Fax: 03 5941 3784

Request to amend a current planning permit application

This form is used to request an amendment to an application for a planning permit that has already been lodged with Council, but which has not yet been decided. This form can be used for amendments made before any notice of the application is given (pursuant to sections 50 / 50A of the Planning and Environment Act 1987) or after notice is given (section 57A of the Act).

PERMIT APPLICATION DETAILS

Application No.:	T230312		
Address of the Land:	8 Wattletyree Road, Bunyip		
MENDMENT TYPE			
Under which section of t	the Act is this amendment being made? (select o	one)	ye us some
Section 50 - Amendme	nt to application at request of applicant before	notice:	V
Section 50A - Amendme	ent to application at request of responsible auth	ority before notice:	
Section 57A - Amendm	ent to application after notice is given:		
MENDMENT DETAILS			
What is being amended?	Annual Manager Control Control Control		
What is being applied for	AND ASSESSMENT TO SERVICE AND ASSESSMENT OF THE PARTY OF	Applicant / owner det	ails
Land affected	Other		
Describe the changes.	If you need more space, please attach a separa	te page.	
Plans have been re	evised and details contained within the	consultant assessm	ents have
been adjusted.			
-			

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissertination, distribution or copying of this document is strictly promoted.

		nit is required:
iot applicable	Unchanged 🗸	New amount \$

LODGEMENT

Please submit this form, including all amended plans/documents, to mail@cardinla.vic.gov.au

You can also make amendments to your application via the Cardinia ePlanning Portal at https://eplanning.cardinia.vic.gov.au/

If you have any questions or need help to complete this form, please contact Council's Statutory Planning team on 1300 787 624.

IMPORTANT INFORMATION

It is strongly recommended that before submitting this form, you discuss the proposed amendment with the Council planning officer processing the application.

Please give full details of the nature of the proposed amendments and clearly highlight any changes to plans (where applicable). If you do not provide sufficient details or a full description of all the amendments proposed, the application may be delayed.

No application fee for s50/s50A requests unless the amendment results in changes to the relevant class of permit fee or introduces new classes of permit fees. The fee for a s57A request is 40% of the relevant class of permit fee, plus any other fees if the amendment results in changes to the relevant class (or classes) of permit fee or introduces new classes of permit fees. Refer to the Planning and Environment (Fees) Regulations 2016 for more information.

The amendment may result in a request for more under section 54 of the Act and/or the application requiring notification (or re-notification). The costs associated with notification must be covered by the applicant.

Council may refuse to amend the application if it considers that the amendment is so substantial that a new application for a permit should be made.

Any material submitted with this request, including plans and personal information, will be made available for public viewing, including electronically, and copies may be made for interested parties for the purpose of enabling consideration and review as part of a planning process under the *Planning and Environment Act* 1987.

Cardinia Shire Council 2

Application number:

Application to amend a current planning application

T230312

Pursuant to which section	on of the Planning and Environment Act 1987 is this amendment being	made?
	nt to application at request of applicant before notice:	х
Section 50A - Amendme	nt to application at request of responsible authority before notice:	
Section 57A - Amendme	ent to application after notice is given:	
What is the purpose of t	he amendment? Please list all changes:	
The position of the D1 a	he amendment? Please list all changes: nd D2 DSS Bunyip West pipes are shown centrally in the road reserve u in impacts, as per Melbourne Water advice.	nder the
The position of the D1 a gravel to avoid vegetatio	nd D2 DSS Bunyip West pipes are shown centrally in the road reserve us impacts, as per Melbourne Water advice. Diogical Assessments (labelled Final 6) and original NVR maps (labelled	4870000000

This copied document is made available for the purpose of the planning process as set out in the Planning one Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

Fees		
Amendment in accordance with Section 50 or 50A	Nil	
Amendment pursuant to Section 57A	40% of the fee applicable to the original permit class plus the difference in fees if the amendment changes the class of permit to that with a higher application fee.	

Lodgement of application

Your application can then be sent via email, mail or submitted in person at Council's Civic Centre.

Assistance

If any assistance in completing this form is required, we recommend you contact Council's Statutory Planning Unit on **1300 787 624** before lodging an application. Insufficient or unclear information may delay the processing of your application.

Note: Any material submitted with this application, including plans and personal information, will be made available for public viewing, including electronically, and copies may be made for interested parties for the purpose of enabling consideration and review as part of a planning process under the Planning and Environment Act 1987.

Cardinia Shire Council

Civic Centre 20 Siding Avenue, Officer

PO Box 7

Pakenham 3810 (DX 81006 Pakenham)

Phone: 1300 787 624

Email: mail@cardinia.vic.gov.au Web: cardinia.vic.gov.au

National Relay Service (NRS)

TTY: 133 677 (ask for 1300 787 624)

Speak and Listen (speech-to-speech relay): 1300 555 727 (ask for 1300 787 624)

Application to amend a current planning application

	T230312 PA	
Address of subject site	8 Wattletree road, bunyip 3815	
Pursuant to which section	on of the Planning and Environment Act 1987 is this amendment being	made?
Section 50 - Amendmer	nt to application at request of applicant before notice:	
Section 50A - Amendme	nt to application at request of responsible authority before notice:	•
Section 57A - Amendme	ent to application after notice is given:	
What is the purpose of t	he amendment? Please list all changes:	
Lots 305 and 306 have number 30 (previously 3	he amendment? Please list all changes: been consolidated therefore the proposed number of lots in the staged 1). The preamble to read: "Staged subdivision of the land into 30 lots a	
Lots 305 and 306 have number 30 (previously 3	been consolidated therefore the proposed number of lots in the staged	
Lots 305 and 306 have number 30 (previously 3	been consolidated therefore the proposed number of lots in the staged	
ots 305 and 306 have number 30 (previously 3	been consolidated therefore the proposed number of lots in the staged	
Lots 305 and 306 have number 30 (previously 3	been consolidated therefore the proposed number of lots in the staged	
Lots 305 and 306 have number 30 (previously 3	been consolidated therefore the proposed number of lots in the staged	
Lots 305 and 306 have number 30 (previously 3	been consolidated therefore the proposed number of lots in the staged	
Lots 305 and 306 have number 30 (previously 3	been consolidated therefore the proposed number of lots in the staged	
Lots 305 and 306 have	been consolidated therefore the proposed number of lots in the staged	

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

Fees	
Amendment in accordance with Section 50 or 50A	NII
Amendment pursuant to Section 57A	40% of the fee applicable to the original permit class plus the difference in fees if the amendment changes the class of permit to that with a higher application fee.

Lodgement of application

Your application can then be sent via email, mail or submitted in person at Council's Civic Centre.

Assistance

If any assistance in completing this form is required, we recommend you contact Council's Statutory Planning Unit on 1300 787 624 before lodging an application. Insufficient or unclear information may delay the processing of your application.

Note: Any material submitted with this application, including plans and personal information, will be made available for public viewing, including electronically, and copies may be made for interested parties for the purpose of enabling consideration and review as part of a planning process under the Planning and Environment Act 1987.

Cardinia Shire Council Civic Centre

PO Box 7

20 Siding Avenue, Officer

Pakenham 3810 (DX 81006 Pakenham)

Phone: 1300 787 624

Email: mail@cardinia.vic.gov.au Web: cardinia.vic.gov.au

Web: cardinia.vic.gov.au

National Relay Service (NRS)

Carc

Application to amend a current planning application

Application number:	T230312			
ddress of subject site Lot 2 PS708283P, 8 Wattletree Road, Bunyip 3815				
ursuant to which section	on of the Planning and Environment Act 1987 is this amendment being	made?		
	nt to application at request of applicant before notice:	0		
Section 50A - Amendme	nt to application at request of responsible authority before notice:	0		
Section 57A - Amendme	ent to application after notice is given:			
ection 57A - Amendme	ent to application after notice is given:	*		
Vhat is the purpose of t	he amendment? Please list all changes;			
he road alignment has	been revised to avoid vegetation impacts.			

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

Fees Amendment in accordance with Section 50 or 50A	Nil
Amendment pursuant to Section 57A	40% of the fee applicable to the original permit class plus the difference in fees if the amendment changes the class of permit to that with a higher

Lodgement of application

Your application can then be sent via email, mail or submitted in person at Council's Civic Centre.

Assistance

If any assistance in completing this form is required, we recommend you contact Council's Statutory Planning Unit on **1300 787 624** before lodging an application. Insufficient or unclear information may delay the processing of your application.

Note: Any material submitted with this application, including plans and personal information, will be made available for public viewing, including electronically, and copies may be made for interested parties for the purpose of enabling consideration and review as part of a planning process under the Planning and Environment Act 1987.

Cardinia Shire Council

Civic Centre 20 Siding Avenue, Officer

PO Box 7

Pakenham 3810 (DX 81006 Pakenham)

Phone: 1300 787 624

Email: mail@cardinia.vic.gov.au Web: cardinia.vic.gov.au

National Relay Service (NRS)

TTY: 133 677 (ask for 1300 787 624)

Speak and Listen (speech-to-speech relay): 1300 555 727 (ask for 1300 787 624)

Translator Interpretation Service 131 450 (ask for 1300 787 624)

Dopytight State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1965 (Citr), to comply with a statutory requirement or pursuant to a written agreement. The information is only waite at the time and in the form obtained from the LANDATA REDID TM System. Note of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Sovermont acknowledges the Traditional Owners of Victoria and page respects to their origining occession to their Country, History and Cultum, The Victorian Soverment extends the respect to their Enters, part, present and expective.

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

Page 1 of 1

VOLUME 11457 FOLIO 077

Security no : 124107180712E Produced 27/06/2023 02:53 PM

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

LAND DESCRIPTION

Lot 2 on Plan of Subdivision 708283F. PARENT TITLES : Volume 09798 Folio 905 Volume 10362 Folio 225

Created by instrument PS708283P 14/11/2013

ENCUMBRANCES, CAVEATS AND NOTICES

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

SEE PS708283P FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

NIL

------END OF REGISTER SEARCH STATEMENT-------

Additional information: (not part of the Register Search Statement)

Street Address: 8 WATTLETREE ROAD BUNYIP VIC 3815

ADMINISTRATIVE NOTICES

NIL

eCT Control 17349J BDLEGAL Effective from 20/07/2020

DOCUMENT END

Title 11457/077 Page 1 of 1

Imaged Document Cover Sheet

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By taking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

The document following this cover sheet is an imaged document supplied by LANDATA®, Secure Electronic Registries Victoria.

Document Type	Plan
Document Identification	PS708283P
Number of Pages	3
(excluding this cover sheet)	
Document Assembled	27/06/2023 14:55

Copyright and disclaimer notice:

© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Secure Electronic Registries Victoria Pty Ltd (ABN 86 627 986 396) as trustee for the Secure Electronic Registries Victoria Trust (ABN 83 206 746 897) accept responsibility for any subsequent release, publication or reproduction of the information.

The document is invalid if this cover sheet is removed or altered.

CR8 use only Stage No. PLAN OF SUBDIVISION EDITION 1 PS 708283 P LOCATION OF LAND This copied docu Constroment whereoff in the constraint in the co as set out in the l problem was a compared by the control of the contro Parish Bunyip used for any other and agree that you will only use the document for the purpose specified above and that any Tawnships ulturum of hispolag es treatificationed ensembling from the Subdivision Act 1968. dissemnation, dis Section: This plan is certified under section 11(7) of the Subdivision Act 1988. Crown Allotment: Data of original certification under section 6. 28 (Pt) This is a statement of compliance issued under segion 21 of the Title Reference: V. 979B F. 505 & Subdivision Act, 1988. V 19362 F. 225 Lot 33 LP 5157 Last Plan Reference: OPEN SPACE Lot 2 PS 400705D A requirement for public open space upper section 18 of the 00 Subdivision Act 1988 has/has not begin made 4 - 10 Wattletree Road Postal Address: (ii) The requirement has been satisfied Let the modern development Gunyap, 3815 (in) The requirement is to be satisfied in Stage MGA94 Co-ordinates: E 386,700 Council Dalegate na approximents at bod. N 5 783 270 Council Seal o poor Date Zone 65 Re-certified under section 11(7) of the Subdivision Act 1988 Vesting of Roads or Reserves Council Delegate песіфе Council / Body / Person Council Seaf Dale Mil MEL Matations This is not a staged subdivision. Depth Limitation. DOES NOT APPLY Staging Planning Permit No. This is a Spear Plan Sirvey This plan is based on Survey This survey has been connected to permanent marks no(s): Underlined bearings and distances have not been re-established and are subject to further survey. In Prodaimed Survey Area No. 71 Easement Information LRS use only Legend: A - Appurtanent Easement E - Enoumbering Easement | R - Enoumbering Easement (Road) Statement of Compliance() Width Examption Statement Easemeni Purpose Land Benefited/in Faveur Of Organ (Matres) Reference M Received PS 400706 D Cardinia Shira Council & All land E-1 Drainage 3 in PS 400708D. DATE 1/11/2013 E-2 Drainage 3 This Pier Lot 1 on this Plan. LRS use only PLAN REGISTERED TIME 2.55 PM DATE | 14/11/2013 D Poped Assistant Registrar of Tales Sheet 1 of 2 sheets LICENSED SURVEYOR: R. P. NOBELIUS NGBELIUS LAND SURVEYORS PIO GON 661 PARCHILAN 3510 PKI (5 5941 411) PAL (5 5941 7059 SIGNATURE DIGITALLY SIGNED. DATE COUNCIL DELEGATE SIGNATURE: REF: 10374 VERSION: Onginal sheet size A3

TOWN The copied occurrent is made available for the Section that Planning and Environment A seed for any other purpose. By laking a copy and agree that you will only use the document dissentination, distribution or appying of live of the purpose of the purpose

STAGED SUBDIVISON OF THE LAND INTO MULTIPLE LOTS & THE REMOVAL OF VEGETATION

8 WATTLETREE ROAD, BUNYIP

TABLE OF CONTENTS

1.	PRELIMINARY	3
2.	INTRODUCTION	4
3.	SUBJECT SITE AND SURROUNDING LOCALITY	5
	SITE ANALYSIS	5
	PERMIT HISTORY	6
	SURROUNDS	6
	ENVIORNMENTAL CONSIDERATIONS	7
4.	THE PROPOSAL	11
5.	RELEVANT PLANNING CONTROLS	18
	ZONING CONTROLS	18
	OVERLAYS	20
6.	MUNICIPAL PLANNING STRATEGY	20
7.	STATE AND LOCAL PLANNING POLICY FRAMEWORK	23
	CLAUSE 11 SETTLEMENT	23
	CLAUSE 13 ENVIRONMENTAL RISKS AND AMENITY	23
	CLAUSE 15 BUILT ENVIRONMENT AND HERITAGE	35
	CLAUSE 18 TRANSPORT	35
	CLAUSE 19 INFRASTRUCTURE	36
	RELEVANT & INCORPORATED DOCUMENTS	36
8.	PARTICULAR PROVISIONS	42
	CLAUSE 52.12 BUSHFIRE EXEMPTIONS	42
	CLAUSE 52.17 NATIVE VEGETATION	42
	CLAUSE 53.01 PUBLIC OPEN SPACE CONTRIBUTION AND SUBDIVISION	45
	CLAUSE 53.18 STORMWATER MANAGEMENT IN URBAN DEVELOPMENT	45
	CLAUSE 56 RESIDENTIAL SUBDIVISION	46
9.	GENERAL PROVISIONS	52
	CLAUSE 65 DECISION GUIDELINES	52
	CLAUSE 71.02-3 INTEGRATED DECISION MAKING	56
1(O. CONCLUSION	58

This copied document is made available for the purpose of the planning process as set out in the Planning one Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is shielly promoted.

1. PRELIMINARY

ADDRESS	Lot 2 PS708283P, 8 Wattletree Road, Bunyip 3815				
RESPONSIBLE AUTHORITY	Cardinia Shire Council				
ZONE	General Residential Zone- Schedule 1				
OVERLAY	No Overlays				
BUSHFIRE PRONE AREA	Yes				
CULTURAL HERITAGE	Not applicable				
EASEMENTS, RESTRICTIONS,	No restrictions are recorded on the title.				
ENCUMBRANCES	An E1 and E2 easement (both Drainage) on the land				
PROPOSAL	The staged subdivision of the land into thirty (30) lots and				
	the removal of Native Vegetation				
PERMIT TRIGGERS	• Pursuant to clause 32.08-3 of the GRZ1 a permit is required to				
	subdivide the land.				
	Pursuant to clause 52.17 (Native Vegetation) a permit is				
	required to remove, destroy or lop native vegetation.				
RELEVANT PLANNING	Clause 11 Settlement				
CONTROLS AND	Clause 13 Environmental Risks & Amenity				
INCORPORATED	Clause 15 Built Environment & Heritage				
DOCUMENTS	Clause 16 Housing				
	Clause 19 Infrastructure				
	Clause 32.08 General Residential Zone				
	Clause 52.17 Native Vegetation				
	Clause 53.01 Public Open Space				
	Clause 53.18 Stormwater Management in Urban Development				
	Clause 56 Residential Subdivision				
	Clause 65.02 Approval of an application to subdivide land				
	Clause 71.03 Integrated decision making				
	Bunyip Township Strategy (21 September 2009)				
SUBMITTED DOCUMENTS	Wattletree Road Development Plan (Ver 14) & Feature and Levels				
	Plan - Nobelius Land SurveyorsPlan of Survey – Nobelius Land Surveyors				
	Bushfire Attack Level Assessment – Nobelius Land Surveyors				
	Copy of Title & Title Plan				
	Arboricultural Impact Assessment final 8– Healesville Plants, August				
	2025				
	NVR & Biodiversity assessment Report – Healesville Plants, V9				
	August 2025				
	Functional Layout Plan (REV I) – TaylorMiller/Engmil Functional Layout Plan (REV I) – TaylorMiller March 2022				
	 Engineering Service Report, TaylorMiller, March 2023 Traffic Impact Assessment Report, Transport & Traffic Solutions, 				
	February 2023				
	Stormwater Management Strategy (Rev 7), DPM Consulting Group,				
	April 2025				
NLS QUALITY SYSTEM	AUTHOR DATE ISSUED CHECKED BY REVISION				
	JB AUGUST 2025 RO 4				

This copied document is made available for the purpose of the planning process as set but in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

2. INTRODUCTION

This town planning report has been prepared by Nobelius Land Surveyors on behalf of the landowner and is submitted to Cardinia Shire Council to support an application for the staged subdivision of the land into thirty (30) lots and the removal of native vegetation.

The subject site is located in a residential area of Bunyip designated for the development of future residential estates. The land is able to connect to all services and provides an excellent opportunity to provide residential land in a township experiencing sustained growth.

The purpose of this report is to assess the proposed staged subdivision of the land which will ultimately yield thirty (30) lots against the relevant provisions of the Cardinia Planning Scheme, the Bunyip Township Strategy and local and state planning policies. The proposed subdivision has undergone an extensive design process and is informed by a suit of technical assessment to ensure that the proposal is responsive to key site constraints and considerations, such as overland flows and vegetation. The site presents an excellent strategic location for further residential allotments and the proposal responds to and integrates with surrounding residential developments along Wattletree Road to the north and Petty Road to the south.

This report aims to demonstrate that the proposal is:

- Consistent with the State and Local Planning Policy framework;
- Consistent with the requirements of the Cardinia Planning Scheme;
- Consistent with the Bunyip Township Strategy (21 September 2009);
- Consistent with the requirements of Clauses 56; and
- Will satisfactorily integrate with surrounding lot sizes and land uses.

The proposal is entirely appropriate to be granted a planning permit and receive Council's full support on the basis that the proposal supports Cardinia's vision for future residential development on the two sites and is appropriate for the locality.

This copied document is made available for the purpose of the planning process as set but in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

The report is copyright of Nobelius Land Surveyors. The intellectual property contained in this document remains the property of Nobelius Land Surveyors or is used with permission of the owner. No intellectual property transfers. This report has been prepared on behalf or and for the exclusive use of Nobelius Land Surveyors Town Planning clients. The report relies on information provided by the client, engaged consultants and searches of registers. Nobelius Land Surveyors employs reliable sources though we give no warranty – express or implied – as to accuracy, completeness. Nobelius Land Surveyors, it's directors, principals or employees be liable to the recipient, the client or any third party for any decisions made or actions taken in reliance on this report (or any information in or referred to in it) or for any consequential loss, special or similar damages, even if advised of the possibility of such damages.

3. SUBJECT SITE AND SURROUNDING LOCALITY

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any case-mination, distribution or copying of this document is strictly promoted.

SITE ANALYSIS

The land is formally described as Lot 32 on Plan of Subdivision 708283P, 8 Wattletree Road, Bunyip, contained within Volume 11457 Folio 077. The land is a large "T-Junction" shaped allotment, with dual frontages to Wattletree Road to the north and Petty Road to the south. The site addresses Wattletree Road to the north for a length of 96.74m, and Petty Road in the south for a length of 277.62m. The site has a total area of 40, 870m² (4.09 hectares).

24 NYLANDER ROAD, BUNYIP (IMAGE COURTESY OF LASSI, 2022)

The land is undeveloped other than a modest shed in the northern portion of the land which houses a tractor.

The land features an isolated 'patch' of vegetation that is generally consistent with the "Woodland" classification under *AS3959:2018* and measures approximately 12,000sqm in area. The site features a dam located centrally in the southern portion of the site.

Topographically, the site slopes downward from the high point adjacent to Wattletree Road in the north to the low point of the site which is generally consistent with the current location of the dam.

The remainder of the land is predominately cleared and has been historically employed for grazing.

An E1 easement measuring 3 metres in width extends north from the southern boundary on an 180degree trajectory and has the purpose of Drainage in favour of Cardinia Shire Council and All land in PS400706D.

An E2 easement measuring 3 metres in width and running parallel to the western-most boundary has the purpose of Drainage in favour of Lot 1 on this plan (PS708283P).

A review of the Certificate of Title indicates that the land is not impacted by any encumbering covenants, caveats or restrictions under Section 173 of the *Planning and Environment Act, 1987* or the *Subdivision Act, 1988*.

A copy of the Certificate of Title and current Plan of Subdivision dated within 3 months of application lodgement has been provided as part of this submission.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By taking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

PERMIT HISTORY

T120242 A permit was issued for the Subdivision of land into Two (2) lots (boundary realignment), generally in accordance with the approved plans, issued 5 September 2012.

SURROUNDS

Wattletree Road is a residential road in Bunyip that connects to McNamara Road in the west and Hope Street to the east. It provides access to new residential allotments to the north (Gwen Maredith Drive) and proposed lots to the south (9-13 Wattletree Road – T220583).

Petty Road is an east-west residential street in Bunyip that has traditionally provided access to lifestyle allotments to the northwest of the town centre. Recent residential development along Petty Road has resulted in a portion of Petty Road being sealed to provide access to new residential allotments (16 and 18 Petty Road, and the subdivision of the land between 24 and 45 Petty Road that sees the northerly extension of Jasmine Street). The recent subdivision and development nestled amongst larger rural lots contributes to an 'evolving' semi-rural character.

Lots adjoining the subject site are generally larger in area (3,961sqm for No. 28 Gwen Meredith Drive to 3.9 hectares at No. 7 Wattletree Road) with dwellings surrounded by modest grazing paddocks with retained vegetation adjacent to title boundaries. The emergence of residential estates such as that which addresses Gwen Meredith Drive is evidence of the growing demand for residential land and housing being experienced in Bunyip in recent times. The Petty Road and Wattletree Road precinct has traditionally comprised large residential allotments used for small scale agriculture and lifestyle purposes and have contributed to the valued rural character of the town. These large rectangular allotments were designated for future residential estates in the Bunyip Township Strategy in 2009, and as such, an emerging character that includes diverse lot sizes and infill residential development is being experienced.

The land immediately adjoining the subject site has been summarised below:

NORTH	Abuts Wattletree Road. Across the road are two parcels of land:
	7 Wattletree Road, Bunyip, a developed parcel measuring 3.4 hectares zoned GRZ1;
	and the southern most lots that address Gwen Meredith Drive, an estate of 16 lots
	developed with dwellings. These lots are zoned Low Density Residential Zone –
	Schedule 2.

SOUTH	Addresses Petty Road with significant roadside vegetation contained in the road		
	reserve. Further south are rural-residential lots; No.'s 45,54,66 and 50 Petty Road.		
	They measure between 1.6 hectares (No. 50 Petty Road) to 2 hectares (No. 45 Petty		
	Road). They are all developed with dwellings. These lots are similarly zoned General		
	Residential Zone.		
EAST	No.'s 12 and 14 Wattletree Road abut the subject site to the northeast which are		
	developed with dwellings, with the eastern boundary abutting Lot 2 PS545850 (Petty		
	Road), which is undeveloped. These lots are similarly zoned; General Residential		
	Zone.		
WEST	Abuts No. 2 Wattletree Road with a dwelling developed in the northern portion of		
	the site and the balance of land cleared and employed for modest grazing. There is		
	gateway access to Petty Road adjacent to the southern boundary. This site is subject		
	to the General Residential Zone.		

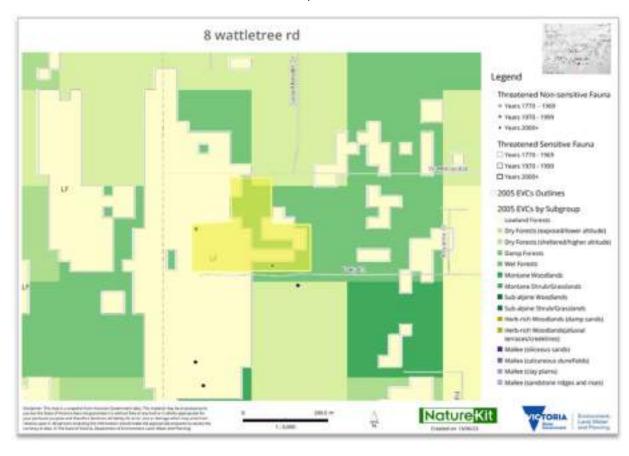
PROPOSED PARCELS IN RELATION TO THE SUBJECT SITE (IMAGE COURTESY OF VICPLAN).

ENVIORNMENTAL CONSIDERATIONS

TOPOGRAPHY

Topographically, the land falls from the north to the south with a slope of approximately 1 in 12 across the land, from north to south. The topography, as the below graphic shows, does not pose constraints to the proposed subdivision of the land.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

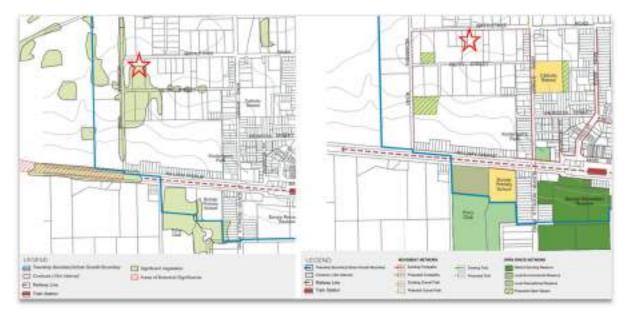

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

CULTURAL HERITAGE

The land is not mapped within an area of potential cultural significance.

BIODIVERSITY

No listed flora or fauna species are recorded on the subject site. *NatureKit* (DELWP, 2023) identifies the subject site as featuring a combination of Lowland Forest and Damp Forest, though little of the latter remains. Please refer to the *NatureKit* map below.


The biodiversity score, and vegetation does not reflect the existing conditions of the site. The subject site is considered a highly modified landscape that has been subject to historical clearing and grazing. The infill residential development occurring within the immediate surrounds can also be argued to have significantly reduced the biodiversity value of the land.

VEGETATION

The landscape is modified, and the land has been extensively cleared for pasture. The vegetation in the road reserve, particularly along Petty Road, is to be retained as part of this proposal.

The biodiversity assessment provided by Healesville Plants, dated June 2023 assessed 86 trees; 54 on the subject site, 2 on the adjoining property to the west and 26 within the road reserve to the south (Petty Road). Of the trees assessed, 47 were found to be indigenous to the area, 1 tree is a planted native species, 35 are exotic species and 3 are dead.

The *Bunyip Township Strategy 2009* identifies that the vegetated area of the site in the western portion site is mapped as having significant vegetation (show below left from the extract of Figure 10 – Environmental Features where the subject site is shown with a red and white star) and ear-marked as Open Space (shown below right from an extract of Figure 9 – Open Space from the *Bunyip Township Strategy 2009*).

Healesville Plants were engaged to prepare an *Arboricultural Assessment* in June 2023 (as amended 2025) which contains the following information:

- The identification and assessment of trees, including their location, species, dimensions, useful life expectancy and health and structural conditions.
- The arboricultural value of each tree, indicating its merit for retention in the landscape throughout nearby disturbance.
- The size of the TPZ for each tree, in accordance with the Australian Standard 4970, Protection of Trees on Development Sites.
- Recommendations on protective measures for any trees adjacent to development.

The report identifies that mid to large size trees, greater than 10m in height are common within the southern section of the site and the adjacent publicly managed spaces. In total, 95 trees were assessed, 54 on the subject site, and 2 within adjacent third-party managed property and 35 within

the Petty Road reserve. The most commonly assessed species on the site were Eucalyptus obliqua, E. radiata, E. sieberi and E. dives. With several White Stringybark present as large and very old trees.

BUSHFIRE PRONE AREA

The entirety of the subject site is mapped as a designated Bushfire Prone Area. Further information on how the proposal has considered the implications of being mapped within a designated bushfire prone area has been provided in the response to Clause 13.02 in the State and Local Planning Policy section of this report.



This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

4. THE PROPOSAL

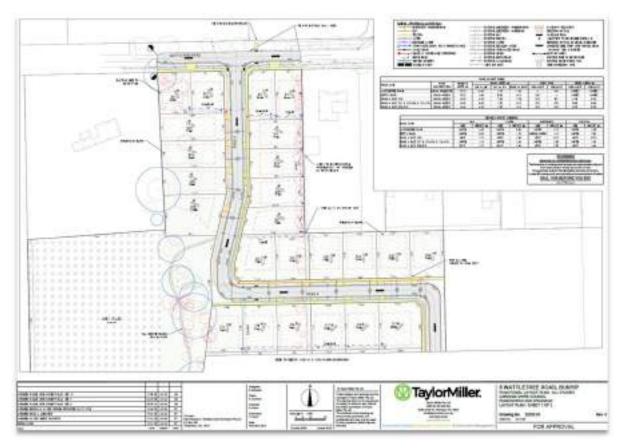
The applicant seeks approval for the staged subdivision of land into thirty (30) lots. It is proposed to stage the subdivision in order to fund the required development and provision of infrastructure and services. Stage 1 requires the land to be subdivided into two lots, which will enable the sale of the southern portion of the site; the two lot subdivision is referenced on the Development Plan (Version 10) as the red, centrally located line that runs in a west to east orientation (see below left). Stage 2 will see the development of the southern portion of the site and Stage 3 will continue the development of the road, access and infrastructure in the northern portion of the site, as per the Concept Plan (Version 14) below. Stage 4 ensures the Temporary Retarding Basin provides stormwater attenuation to the site until such time that the site is connected to alternative drainage. The proposal also seeks permission to removal Native Vegetation, which is discussed in detail below.

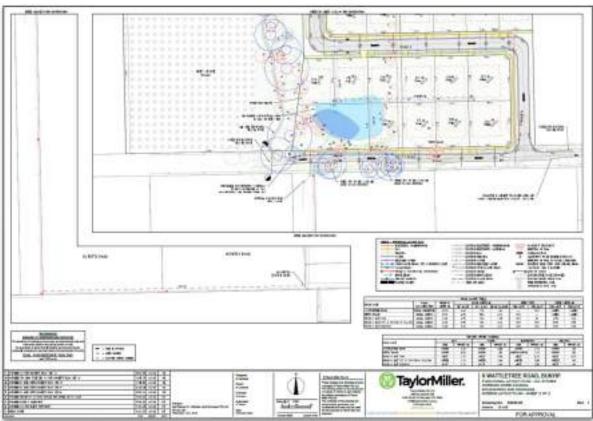
SUBDIVISION PROPOSAL

The proposed lot configuration is as per the Plan of Subdivision prepared by Nobelius Land Surveyors (Version 14, above). The purpose of the Building Envelopes (hereafter BEs) is to illustrate compliance with the requirements of the Bunyip Township Strategy with 7 meter front setbacks, 2.5 meter side and rear setbacks and show that 87% of lots have a minimum area of 700sqm. Additionally, the BEs (Lots 301, 305, 306) have regard for the Tree Protection Zones of onsite and third-party trees.

The details of each stage have been provided in the table below:

STAGE	LOTS	AREA	TOTAL AREA
1	1	10,358m ²	4.09 hectares
	2	30,510m ²	
2	201	719m ²	3.051 hectares
	202	700m ²	
	203	779m²	
	204	700m ²	
	205	700m ²	
	206	700m ²	
	207	883m ²	
	208	883m ²	
	209	700m ²	
	210	700m ²	
	211	716m ²	
	214	700m ²	

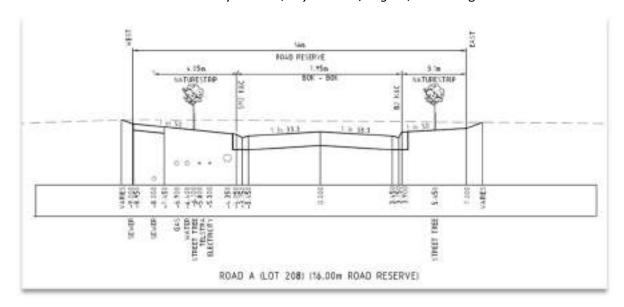

		2	
	215	717m ²	
	216	716m ²	
	217	700m ²	
	218	700m ²	
	Reserve No.1	1,3228m ²	
	Road R-1	5,780m ²	
3	301	613m ²	1.036 hectares
	302	612m ²	
	303	778m²	
	304	768m ²	
	305	758m ²	
	306	1,043m ²	
	307	723m ²	
	308	707m ²	
	309	700m ²	
	310	700m ²	
	311	594m ²	
	312	590m ²	
4	212	715m ²	Temporary Retarding Basin
	213	846m ²	1,561m ²


The subdivision has been proposed in stages to ensure construction of services can be funded.

Lots 301, 302, 311 and 312 will address Wattletree Road with access provided via shared crossovers to preserve roadside vegetation. Lots 208 - 211 will address Petty Road and have individual crossovers. The balance of lots will address the centrally located road reserve with individual crossovers. Please refer below to an extract from the Functional Layout Plan (Rev I) from (*TaylorMiller/EngMil*) (as amended), dated August 2025

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is shielly promoted.


This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

SERVICE PROVISION

A Service Provision Assessment by *Taylor Miller/EngMil* dated August 2025 (Rev I) has been provided to support this submission. The report details the available services and is referenced below.

ROAD PROVISION AND CONSTRUCTION

The centrally located road has a north to south orientation that provides access and egress to and from the proposed subdivision from Wattletree Road in the north and Petty Road in the south. The road is designed to meet the requirements of an 'Access Street' modified to suit Bunyip Township, as per the Engineering Design & Construction Manual, VicRoads and Austroads. Below is a cross-section with reference to the Functional Layout Plan, *TaylorMiller/EngMil*, dated August 2025.

DRAINAGE

The site is subject to the Melbourne Water Drainage Scheme '2883-Bunyip West DSS'. Melbourne Water is the responsible Authority for major drainage projects in the vicinity. A Stormwater Management Strategy (Ver 7) by *DPM Consulting* dated 23rd April 2025 (as revised) has been submitted in support of this planning application. The report identifies the internal and external drainage, identifies flood mitigation measures and key drainage infrastructure that are required. Integrated Water Management (IWMP) and Water Sustainable Urban Design (WSUD) provides the basis for addressing the afore-mentioned issues.

There are three identifiable 'catchments' as indicated by the green, brown and purple shaded areas below (Figure 7, page 14 of the submitted SWMS by DPM Consulting). The three shaded areas drain to either open drains and associated culverts under Petty Road or the onsite dam.

It is understood that the drainage scheme, Bunyip West DDS, is active. The subject site ultimately relies on the delivery of drainage scheme pipelines and constructed waterways to convey post development flows to a retarding basin, as per the plan below (Figure 9, page 15 of the submitted SWMS, DPM Consulting). The Temporary Retarding Basin will be decommissioned once the future drainage infrastructure (RB1/WL1) is delivered. Additional retardation of overland flows will be provided by water tanks on each site that provides toilet flushing and irrigation to lots and attenuate overland flows and reduce storage requirements of the TRB.

Please note that Melbourne Water have provided consent and planning permit conditions and consent to locate D1-D2 of the DSS to the middle of the gravel section of Petty Road to avoid tree impacts (as per email dated 14 April 2025; MWA1316297).

A MUSIC model of the proposal has been undertaken by DPM Consulting, the results of which are summarised below. The MUSIC model shows the TRB will satisfy treatment train effectiveness.

12222 3001927 2030	Proposed Development	BPEMG
TSS reduction [%]	84.9	80%
TP reduction [%]	59.8	45%
TN reduction [%]	21.6	45%

SUMMARY OF THE MUSIC RESULTS (TABLE 4, PAGE 25 OF THE SWMS REPORT PROVIDED BY DPM CONSULTING).

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

VEGETATION REMOVAL

In total, 95 trees were assessed, 54 on the subject site, and 2 within adjacent third-party managed property and 35 within the Petty Road reserve (Please refer to the Arborist Assessment, Ver 7, July 2025). Of the onsite and third party trees assessed, seventy four (74) are proposed for removal and eighteen (19) will experience minor TPZ encroachment. Three individual trees and 'patch' a require permission to remove are Native Vegetation, triggering clause 52.17 requirements. A Native Vegetation Information Report by *Healesville Plants* has been submitted to support this application and is summarised below and discussed in detail in Section 7.

Trees proposed for removal are as follows (page 86-88; August 2025):

- Trees 2-9 are exotic planted species required to be removed to facilitate the development of sites 301-303.
- Trees 12-37 are exotic planted species adjacent to the eastern boundary. They are in poor condition required to be removed to facilitate the development.
- Tree 38 is exotic planted tree which requires removal for the dam works and lot 215.
- Trees 39 -47 are indigenous and located in the vicinity of the dam self-seeded and required to be removed to facilitate the earthworks for the TRB and subsequent lots 211-215. These trees require offsetting and are mapped in the NVR.
- Trees 61-83 are indigenous trees are located within the Petty Road reserve and will require removal to facilitate the road, footpaths and crossovers for lots 209-213 and have been mapped in the NVR as they require offsetting.
- Trees 84 and 86 are very large old trees and require removal to facilitate road and lot development and have been mapped in the NVR to be offset.
- Tree 85 is an indigenous species of low retention value. It is required to be removed due to its structural integrity and is mapped in the NVR to be offset.

Pursuant to Clause 52.17 Native Vegetation, locally indigenous, non-planted vegetation requires a permit (and offset) to remove, destroy or lop. The NVR by Healesville Plants found that Clause 52.17 will apply to Trees onsite and in the road reserve. The remainder of indigenous trees on the site are contained in the 'reserve' to be vested to Council.

Trees to be retained that will incur <10% incursion include Tree 1 which is a large old tree located in the northwest portion of the site. It can be retained with work in lot 301 however it has been offset due to consequential loss from the division of the site. The encroachment is calculated as 8.1%. Trees 10 and 11 are third party trees that will experience encroachment, 2.6% and 1.2% respectively, by lots 304 and 305 building envelopes. Trees 48 to 57 are located in the south western portion of the site, some of which are large old trees with high retention value. Trees 48 and 49 will experience 1.2% encroachment from fences associated with Lots 213 and 214. Tree 58 is a large old tree on Petty Road reserve and will experience no new2 encroachment from the road works in petty Road. Updated assessment of trees identified as A to I located to the south of Petty Road will experience minor additional encroachment (<10%) and no SRZ incursion from roads works in Petty Road. Trees A, B (dead), C, F & H have existing TPZ and SRZ incursion. It is unlikely that road works in Petty Road will result in any additional detrimental incursions given the existing compaction and permeability of Petty Road, and the swale drain to the south of the road that is subject to regular 'de-littering' by Council contractors. As per the amended Arborist report, Ver 7, July 2025, these trees have existing major incursion into their TPZ and SRZs. New encroachment for trees C, D, E, G and H is likely within the encroachments calculated below (extracted from the table on page 88, Arborist Report, Ver 7).

Column 2 shows existing encroachment, and column 3 shows encroachment from the proposal. Column 4 shows the percentage of the new encroachment.

Tree ID	Existing encroachment %	Proposed encroachment %	NEW encroachment % estimated from works to construct crossovers, set formalised drainage infrastructure levels, install services and footpaths= Proposed % minus Existing%	Distance to new works (excluding road surfacing at or above grade)
A	28% TPZ inc. SRZ	28%	0%	NA
В	Dead	Dead	0%	NA
C	31% TPZ inc. SRZ	35%	<10% (4%)	5.9m
D	29% TPZ	37%	<10% (8%)	6.5m
E	41% TPZ inc. SRZ	59%	>10% (18%)	5m
F	5% TPZ	5%	0%	NA
G	40% TPZ inc. SRZ	58%	>10% (18%)	5m
Н	28% TPZ	34%	<10% (6%)	6.5m
I	21% TPZ	21%	0%	NA

As noted on page 89 of the Arborist Report Ver 7, if Council deem these trees lost then an updated NVR will be provided as a condition of a planning permit, should one be issued.

NATIVE VEGETATION REMOVAL

The provision of infrastructure and the road, services, and the lot configuration requires the removal of indigenous vegetation. Whilst all efforts have been made to retain as much vegetation as possible on the site, Council permission is sought for the removal of several trees that were unable to be accommodated in the proposed design.

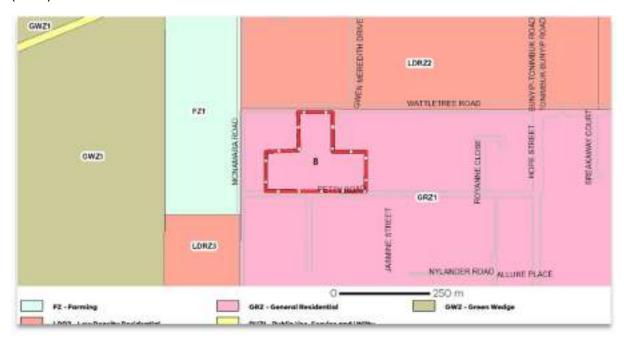
- Of the trees assessed, 47 are identified as indigenous.
- Tree 1 in an indigenous tree and is proposed to be retained, but has been offset given it looks to be consequential loss due to the lots being created are smaller than 4,000m2 and the tree may be subject to loss at a later date.
- Trees 38 and 39 are indigenous, require permission to be removed and require offsetting. An extract of the NVR report is provided in Section 8 of this report.
- Trees 40 to 42 are indigenous, require permission to be removed and require offsetting. An extract of the NVR report is provided in Section 8 of this report.
- Trees 44 to 47 are indigenous, require permission to be removed and require offsetting. An extract of the NVR report is provided in Section 8 of this report.
- Trees 61 to 65 are indigenous, require permission to be removed and require offsetting. An extract of the NVR report is provided in Section 8 of this report.
- Trees 66 and 83 are indigenous, require permission to be removed and require offsetting. An extract of the NVR report is provided in Section 8 of this report.
- Trees 84, 85 and 86 are indigenous, require permission to be removed and require offsetting. An extract of the NVR report is provided in Section 8 of this report.

Please note: Weed species identified on the eastern fringe of the bushland reserve can be removed without a permit. Their removal will effectively disrupt the canopy connection within, and on the

fringe, of the bushland reserve. This will further mitigate risk associated with bushfire though given the isolated nature of the reserve, a fire would need to ignite within the reserve which would significantly reduce the capacity of the fire to build intensity given the area of the bushland reserve.

5. RELEVANT PLANNING CONTROLS

The following section addresses the objectives and requirements of the zoning and overlay controls relevant to the subject site identifying how these planning controls relate to the proposal, trigger an assessment and how we have addressed the requirements of planning provisions.


This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By taking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

ZONING CONTROLS

The following provides a brief summary of the planning controls relevant to the subject site identifying how these planning controls relate to the proposal.

GENERAL RESIDENTIAL ZONE

The subject site and all surrounding land is mapped within the General Residential Zone – Schedule 1 (GRZ1).

The General Residential Zone has the following purposes relevant to this proposal:

- To implement the Municipal Planning Strategy and the Planning Policy Framework.
- To encourage development that respect the neighbourhood character of the area.
- To encourage a diversity of housing types and housing growth particularly in locations offering good access to services and transport.
- To allow educational, recreational, religious, community and a limited range of other non-residential uses to serve local community needs in appropriate locations.

Pursuant to Clause 32.08-3, a permit is required to subdivide land.

An application to subdivide land must meet the requirements of Clause 56 (for 16-59 lots, the objectives and standards of all Clauses except Clause 56.03-1 to 56.03-3, 56.03-5, 56.06-1 and 56.06-3. An assessment of the proposal against the requirements of clause 56 is presented in Section 7 of this report.

This application has satisfied the application requirements outlined in **Clause 32.08-11 Application requirements** by providing the following information:

- A site and context description and design response as required in Clause 56. A Clause 56 assessment is included as part of this town planning report.
- A site feature plan, concept plan, and proposed plan of subdivision, all of which are drawn to scale and dimensioned, and show:
 - Site shape, size, dimensions and orientation.
 - The siting and use of existing and proposed buildings.
 - Adjacent buildings and uses.
 - o The building form and scale.
 - Setbacks to property boundaries.

SCHEDULE 1 TO GENERAL RESIDENTIAL ZONE

No specific neighbourhood character objectives or requirements relevant to the site or the proposed subdivision are described within the schedule to the zone which applies to the *General Residential Areas*.

GENERAL RESIDENTIAL ZONE - DECISION GUIDELINES

The decision guidelines contained in Clause 32.08-13 have been considered in the proposed design. An assessment of the proposal against each relevant guideline is provided below:

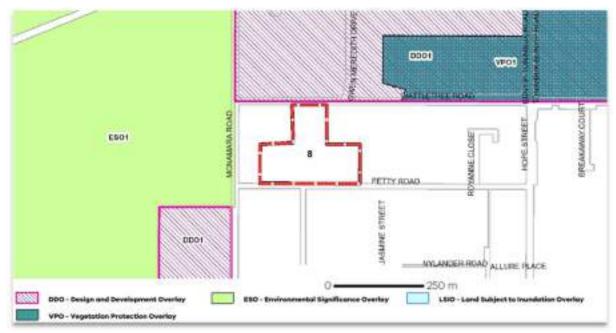
General

- The Municipal Planning Strategy and the Planning Policy Framework.
- The purpose of this zone.
- The objectives set out in a schedule to this zone.
- Any other decision guidelines specified in a schedule to this zone.
- The impact of overshadowing on existing rooftop solar energy systems on dwellings on adjoining lots in a General Residential Zone, Mixed Use Zone, Neighbourhood Residential Zone, Residential Growth Zone or Township Zone.

Subdivision

- The pattern of subdivision and its effect on the spacing of buildings.
- For subdivision of land for residential development, the objectives and standards of Clause 56.

In summary, the proposal meets the requirements of the Municipal Planning Strategy and the Planning Policy Framework as addressed in Section 6 (below). The proposal contemplates the staged subdivision of land into thirty (30) lots ranging in size from 622sqm (Lot2 211 and 217) to 1,399sqm (Lot 305), which are generally consistent in area to lots proposed and developed in similarly zoned land in Bunyip. Schedule 1 is silent on additional objectives and decision guidelines to those nominated in the zone. While impacts of overshadowing will be determined in the event planning applications are lodged for residential development it should be noted that building envelopes feature 2.5 metre setbacks from side and rear boundaries, which are consistent with the Bunyip Township Strategy 2009 and in excess of the minimum side and rear setbacks contained in clause 56 and will contribute to the



avoiding adverse impacts on any rooftop solar systems on adjoining land. Battle-axe lot configurations have been avoided to ensure street frontages and passive surveillance opportunities. Trees have been preserved where possible.

As such, the proposed subdivision is appropriate for the General Residential Zone.

OVERLAYS

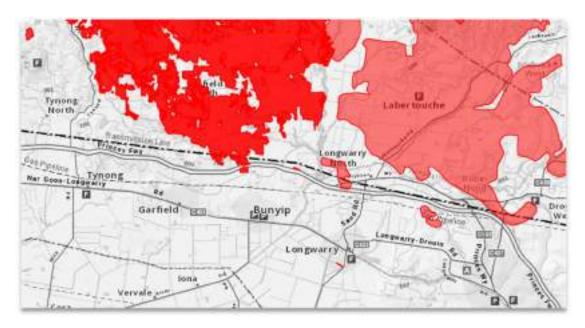
No overlays directly affect the land, as demonstrated in the image derived from VicPlan (2022) below:

This copied document is made available for the purpose of the planning process as set out in the Planning one Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

6. MUNICIPAL PLANNING STRATEGY

CLAUSE 21.01-2 KEY INFUENCES AND CLAUSE 21.01-3 KEY ISSUES

The Cardinia Shire seeks to be recognised as a unique place of environmental significance where our quality of life and sense of community is balanced by sustainable and sensitive development, population and economic growth. The proposal is sensitive to the key issues facing Cardinia that have regard to preserving environmentally heritage significant areas, mitigating risks associated with flooding and bushfire, providing housing and services for a growing community, and facilitating economic development. The subject site is located within the strategic residential area of Bunyip and is consistent with the Cardinia Shire Strategic framework plan at clause 21.01-5.


CLAUSES 21.02 ENVIRONMENT, 21.02-2 LANDSCAPE AND 21.02-3 BIODIVERSITY

Clause 21.02 Environment has the objective, among others, to manage development to mitigate impacts on the operation and health of waterway systems via the provision of retention and treatment of domestic wastewater. Please read our response to the requirements of Clause 21.02 in conjunction with the Stormwater Management Strategy, dated 29th March 2023, provided by DPM Consulting Group. Clause 21.02-2 Landscape and Clause 21.02-3 Biodiversity seek to avoid eroding the existing biodiversity of the Shire and its significant contribution to the landscape. The vegetation contained within the site has been assessed by Healesville Plants. Please read in conjunction with the

Arboricultural Assessment dated June, 2023. The arboricultural assessment included 86 trees where the high value trees have been protected and preserved through considered design of the proposed subdivision. A reserve with an approximate area of 12,000sqm is located in the south west portion of the site and will be vested to council to be preserved as habitat for the Southern Brown Bandicoot and other flora and fauna.

Clause 21.02-3 Bushfire management acknowledges the high risk associated with some of the areas within the shire. Bunyip has modest slope with vegetation coverage akin to grazed paddocks (AS3959-2018) as opposed to the more steeply sloped and densely vegetated areas associated with the Bunyip State Reserve to the north of the Princess freeway, which has experienced fire damage as a result of the 2009 and 2019 fires (refer below). Locating subdivision and infill development in existing low risk areas such as Bunyip meets the primary objective of all planning provisions that seek to mitigate bushfire risk.

Bunyip has topographic and vegetation characteristics that make it a low risk area as evidenced by the Victorian Fire Risk mapping above, 2023.

CLAUSES 21.03 SETTLEMENT AND HOUSING, 21.03-4 RURAL TOWNSHIPS

Clause 21.03 Settlement and Housing and more specifically **Clause 21.03-4 Rural Townships** identifies Bunyip as a large rural township, and highlights the key issues facing rural townships that are relevant to our submission as:

- Retaining and enhancing the existing rural township character.
- Acknowledging that the capacity for growth varies depending on the environmental and infrastructure capacities of each of the towns.
- Designing with regard to the surrounding unique characteristics of the townships.

The proposed subdivision addresses these key issues through ensuring that the lot sizes are respectful and consistent with the existing subdivision patterns and lifestyle and amenity values of the surrounding neighbourhood. High value vegetation will be preserved through design with servicing constraints catered to via the provision of a temporary retarding basin.

Clause 21.08-2 Bunyip ensures use and development proposals are consistent with the requirements of the Bunyip Township Strategy, September 2009. As previously stated, the subject site is located within the area identified as New Residential Estates within the Strategic Framework Plan, refer below (Figure 5, Bunyip Township Strategy, September 2009 with the subject site outlined in red) which have the capacity to accommodate the projected growth of residential (infill) development within the Bunyip township boundaries while preserving existing township character through lot size mechanisms (refer to Sections 4.7 Objectives and 4.8 Policy, Bunyip Township Strategy, September 2009).

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

7. STATE AND LOCAL PLANNING POLICY FRAMEWORK

This part of the report assesses and responds to the legislative and policy requirements for the project outlined in the Cardinia Planning Scheme and in accordance with the Planning and Environment Act 1897. The relevant clauses of the State & Local Planning Policy Framework for subdivisions of the type presented in this report are largely contained in Clauses 11, 13, 15, 18 and 19. The proposal is located within of the study area of the Bunyip Township Strategy.

An assessment against the relevant clauses of the Cardinia Planning Scheme has been provided below:

CLAUSE 11 SETTLEMENT

Clause 11.01-1S Settlement and Clause 11.02-1S Supply of urban land have regard for the development of sustainable growth and development that preserves the distinction between the residential areas of townships such as Bunyip and the green wedge zoned land that surrounds such communities. They have the shared objective to ensure a sufficient supply of land is available for residential, commercial, retail, industrial recreational, institutional, and other community uses, with the intensification of existing urban areas nominated as a viable option. Our proposal is consistent with this objective.

CLAUSE 13 ENVIRONMENTAL RISKS AND AMENITY

Clause 13.01-15 Natural hazards and climate change is a recently introduced planning mechanism (VC216, 10/06/2022) that seeks to prioritise risk-based planning in an effort to minimise the impacts of natural hazards associated with climate change. One strategy that has salience here is the directive to focus growth and development to low-risk locations. The subject site is not vulnerable to flooding, though it is subject to the intensified risks associated with bushfire (identified within a Bushfire Prone Area). The proposal contemplates the subdivision of land within an existing residential area and the development of a road that dissects the lot and facilitates access and egress, which is consistent with risk mitigation policies.

Clause 13.02-15 (Bushfire) of the Planning Scheme applies to all decision making relating to land that is within a BPA; subject to the BMO; or proposed to be used or developed in a way that may create a bushfire hazard and seeks:

To strengthen the resilience of settlements and communities to bushfire through risk-based planning that prioritises the protection of human life.

Strategies employed to achieve the above-mentioned objective include:

- prioritising the protection of human life;
- requiring a robust assessment of the bushfire hazard and risk assessment before any strategic or statutory decision is made; and
- directing population growth and new settlements to low risk locations.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

Clause 13.02-1S provides strategies that seek to mitigate risk associated with bushfire. The following table provides a response to the strategies of clause 13.02-1S.

Clause 13.02-1S (Bushfire) of the Planning Scheme applies to all decision making relating to land that is within a BPA; subject to the BMO; or proposed to be used or developed in a way that may create a bushfire hazard and seeks:

To strengthen the resilience of settlements and communities to bushfire through risk-based planning that prioritises the protection of human life.

Strategies employed to achieve the above-mentioned objective include:

- prioritising the protection of human life;
- requiring a robust assessment of the bushfire hazard and risk assessment before any strategic or statutory decision is made; and
- directing population growth and new settlements to low risk locations.

Clause 13.02-1S provides strategies that seek to mitigate risk associated with bushfire. The following table provides a response to the strategies of clause 13.02-1S.

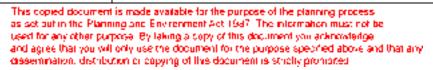
PROTECTION OF HUMAN LIFE

GIVE PRIORITY TO THE PROTECTION OF HUMAN LIFE BY:	RESPONSE
Prioritising the protection of human life over all other policy considerations.	 This proposal contemplates a 30 lot subdivision on land evidencing a modest slope and bushland reserve to be vested to Council. The report demonstrates that the proposal meets the requirements of Clause 13.02-15 including the long term use and development controls through siting and construction to the required BAL. Defendable Space will improve the safety of residential lots to the east and southeast, in the event a fire approaches from the west and north west, and lots to the north east should a fire approach from the south west. The land provides access and egress to areas in Bunyip that are not mapped within the BPA.
Directing population growth and development to low risk locations and ensuring the availability of, and safe access to, areas where human life can be better protected from the effects of bushfire.	 Increased urban development is evident in an area, with increased road networks and 'urbanised' land management, effectively reducing vegetation cover and potential fire runs that can direct fire into Bunyip. The surrounding landscape is consistent with a Type two whereby vegetation beyond 150m from the site has the potential to create neighbourhood-scale destruction, however the readily available egress options provide thoroughfare to shelter from bushfire (DELWP, 2017) The overall design can respond to the modified woodland vegetation in the reserve through setbacks, vegetation management to achieve

- defendable space and appropriate BAL construction standards.
- The existing road network facilitates vehicle egress to surrounding areas identified as low risk locations, and areas mapped outside the BMO and BPA, as per below (subject site is represented by the blue dot).

- Access and egress are facilitated from Wattletree and Petty Roads to Hope Street (north to south orientation) which provides access and egress to Nar-Nar Goon-Longwarry Road to the south and the Princess Freeway to the north.
- It must be noted that while lot 214 is identified as BAL29 and Lot 306 is labelled BAL40 (refer to the BAL40 MAP V30, this is a reflection of their proximity to the bushland reserve, which is an isolated patch of modified vegetation with little chance of fire building intensity that will result in neighbourhood destruction. The road network is shown to provide multiple egress options to low risk locations.
- Lot 306 is proposed as a higher BAL because the Building Envelope extends into the BAL contour shown for that BAL by 4 metres however, it must be noted that this provides a 'functional' building envelope, and is unlikely to elevate risk per se as the weed removal from the reserve will decrease the biomas in the reserve and ability for a fire to build intensity. This higher BAL should be provided as a restriction on the Plan of Subdivision as a precaution for future land owners.

Reducing the vulnerability of communities to bushfire through the consideration of bushfire risk in decision making at all stages of the planning process.


 An application to subdivide the land needs to articulate how the design responds to the identified bushfire risk. Here the subdivision can achieve separation distances from any hazard that equates to BAL12.5, 19 and 29, with the higher BALS generated by the proximity to the onsite reserve, which is an isolated vegetated area with no fire runs

connecting it to the north or northwest, or
southwest.
• The land to the north has been developed in accordance with the LDRZ, with similarly zoned land
to the north west and south west.

BUSHFIRE HAZARD IDENTIFICATION AND ASSESSMENT

BUSHFIRE HAZARD IDENTIFICATION AND ASS	ESSMENT
IDENTIFY BUSHFIRE HAZARD AND UNDERTAKE APPROPRIATE RISK ASSESSMENT BY:	RESPONSE
Applying the best available science to identify vegetation, topographic and climatic conditions that create a bushfire hazard. Considering the best available information	 The Cardinia Planning Scheme relies on the planning proposal to respond to bushfire based on current assessment methods. Clause 13.02-1S and 21.02-3 Bushfire management have been considered and addressed by the proposal. Clause 71.02-3 Integrated Decision Making strengthens the importance of bushfire planning as an appropriate tool to reconcile potential conflicts in design and vision. The assessment method aligns with AS3959:2018; please review the Bushfire Hazard Site Assessment in this report. The planning proposal responds to the Bushfire
about bushfire hazard including the map of designated bushfire prone areas prepared under the Building Act 1993 or regulations made under that Act.	 Prone Area. The land is not mapped within the Bushfire Management Overlay. This report evidences that sufficient setbacks from vegetation can be achieved to warrant BAL29 to be applied to Lot 214 and BAL40 to lot 306; BAL19 to lots 213 and 305 with the balance lots achieving BAL12.5.
Applying the Bushfire Management Overlay in planning schemes to areas where the extent of vegetation can create an extreme bushfire hazard	 The BMO does not apply to the land recognising that the land is in an area of LOW bushfire hazard. The requirements of the BPA are addressed in this report.
Considering and assessing the bushfire hazard on the basis of: • Landscape conditions - meaning the conditions in the landscape within 20 kilometres and potentially up to 75 kilometres from a site; • Local conditions - meaning conditions in the area within approximately 1 kilometre from a site; • Neighbourhood conditions - meaning conditions in the area within 400 metres of a site; and, • The site for the development	 The development of land in the BPA requires the four scales to be considered. The Landscape conditions are represented in Figure 5 (below); The Local conditions (1km radius from the site) are considered in Figure 6 (below); The Neighbourhood conditions (400m from the site) are considered in Figure 7 (below); and The Site conditions are shown in the BAL contour map in Figure 8 (below).

Consulting with emergency management agencies and the relevant fire authority early in the process to receive their recommendations implement and appropriate

It is expected that the Council may consult with the CFA with regard to this proposal, although it is not a mandatory referral requirement.

bushfire protection measures.

Ensurina that strategic planning documents, planning scheme amendments, planning permit applications and development plan approvals properly assess bushfire risk and include appropriate bushfire protection measures.

- This report provides evidence that informs the design and provides a basis for approval of the planning proposal, with regard to bushfire risk.
- Assessing the site-based bushfire risk and including appropriate bushfire protection measures (e.g. managed vegetation, BALs, separation from the access and egress) enables the achievement of the direction of the Planning Scheme.

Not approving development where a landowner proponent has not satisfactorily demonstrated that the relevant policies have been addressed, performance measures satisfied or bushfire protection measures can be adequately implemented.

- Perhaps the most salient element of clause 13.02 as it empowers the Responsible Authority to refuse a permit application until it is satisfied that the bushfire protection measures being are implemented.
- This report demonstrates that the risk of bushfire should not be a reason for refusal.

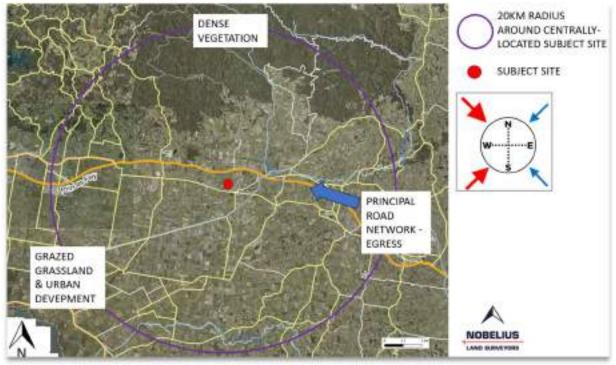


FIGURE 5 (ABOVE) - LANDSCAPE CONDITIONS WITHIN 20KM OF THE SUBJECT SITE.

Landscape conditions (as indicated above) - The area within a 20km radius of the site features a combination of landscapes consisting of cleared farming and grazing; rural/urban development, urban development and densely forested areas. To the north, approximately 7kms away are the foothills of the Dandenong Ranges which exhibit extensive pockets of dense vegetation consistent with the Forest and Woodland classifications of AS3959-2018 Construction of Buildings in bushfire-prone areas and steep topography. The site is surrounded by a patchwork of farming and grazing land interspersed

with rural development to the east, south and west. There is an extensive 'firebreak' between the subject site and the forested State Park to the north. The surrounding road network features principal transport corridors including Princes Freeway (having a west to east orientation), Nar Nar Goon-Longwarry Road (East to west orientation), Bunyip-Modella Road (north to south orientation). The relevance of the road network is that they are most likely those roads that will become the main access points and thoroughfares during an emergency situation.

<u>Local conditions</u> (please refer to the map below) – The area within a 1km radius of the subject site features a combination of land use and development consistent with rural residential zones and general residential zones. To the north is land subject to the GRZ, LDRZ2 and LDRZ3, FZ1 and GWZ1 accessed via a local road network that generally provides for west to east and north to south movement. Vegetation is generally planted native trees adjacent to boundaries and within road reserves with a distinct cleared area separating the subject site from the Bunyip State Park to the north. The land is generally employed for rural residential development in all but a westerly direction with Green Wedge and Farm zoned land within 1km. Bunyip features gentle topography that flattens out to the south.

The most likely bushfire scenario as illustrated by Figures 5 and 6, is for an ignition in the densely vegetated land to the north of the Princes Highway (Bunyip State Park) and for a fire to be 'driven' by a north westerly wind (common in the summer months), which could deliver embers and the risk of further ignition to the township of Bunyip. The land between the Bunyip State Park and the subject site features a patchwork of rural, grazed land and urban development, which is likely to impede fire runs to the onsite vegetation.

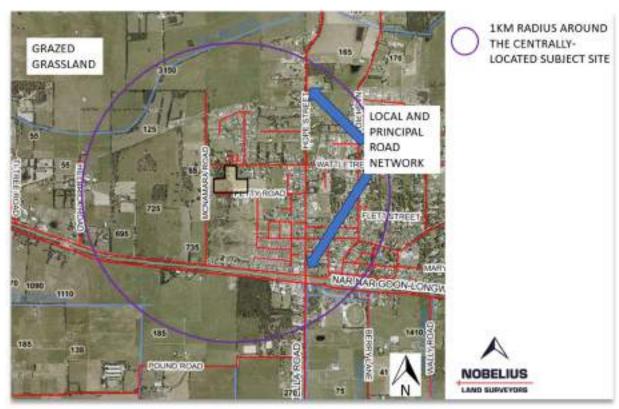


FIGURE 6 (ABOVE) - LOCAL CONDITIONS WITHIN 1KM OF THE SUBJECT SITE.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By taking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

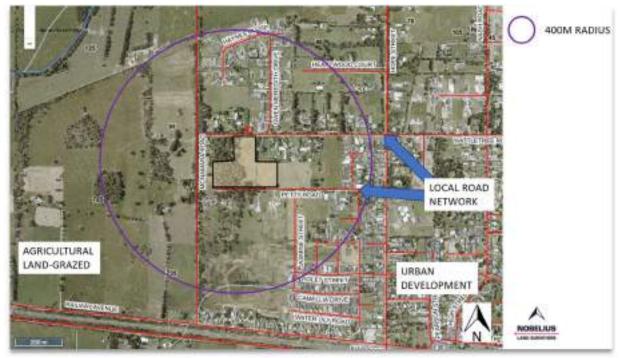


FIGURE 7 (ABOVE) - NEIGHBOURHOOD CONDITIONS WITHIN 400M OF THE SUBJECT SITE.

Neighbourhood conditions within 400m of the site (please refer to the map above) – The subject site is surrounded by land characterised as rural residential land that is subject to intensifying residential development. Land to the north is subject to a current planning application that seeks the subdivision of land into 30 lots. Land to the north, east and south is development with larger residential lots. Vegetation is contained to roadside reserves with an isolated 'cluster' located in the southwest portion of the site and adjacent to Macnamara Road. This vegetation is consistent with modified woodland (AS3959:2018 Construction of buildings in Bushfire Prone Areas).

SETTLEMENT PLANNING

PLAN TO STRENGTHEN THE RESILIENCE OF SETTLEMENTS AND COMMUNITIES AND PRIORITISE PROTECTION OF HUMAN LIFE BY:

Directing population growth and development to low risk locations, being those locations assessed as having a radiant heat flux of less than 12.5 kilowatts/square metre under AS3959:2018 Construction of Buildings in Bushfire Prone Areas (Standards Australia, 2018).

RESPONSE

- The land is adjacent to lots in an established residential area that feature predominantly grass vegetation cover interspersed with modified woodland (to the west) and planted gardens. The site is assessed as meeting the requirements of BAL29 (maximum BAL) given the slope and modified woodland to the west within the site.
- It must be noted that one lot is assessed as BAL29, one lot assessed as BAL40, two lots achieve BAL19 and the balance achieve BAL12.5.
- It must also be noted that the land is only mapped as BPA, not BMO and the BAL assessment is determined by the existing onsite bushland reserve, which is isolated and

	 does not feature significant fire runs to land to the northwest or south west – the directions from which a bushfire threat is likely to emanate. This report shows that the proposed development can achieve suitable mitigation to the bushfire hazard.
Ensuring the availability of and access to areas assessed as BAL-LOW rating under AS3959-2018 Construction of Buildings in Bushfire Prone Areas (Standards Australia, 2018) where human life	 Areas of the site and surrounds can achieve BAL LOW, as per the BAL Contours plan in Figure 8 (below). There are two access and egress options to
can be better protected from the effects of bushfire.	areas of more urbanized built form where the BPA does not apply.
Ensuring the bushfire risk to existing and future residents, property and community infrastructure will not increase as a result of the future land use and development.	 The development of the land will reduce bushfire risk to the residence and surrounding lots to the north west, east and south east given the additional road network. The increased level of vegetation management will reduce the risk of bushfire to existing dwellings and residents on adjacent lots.
Achieving no net increase risk to existing and future residents, property and community infrastructure, through the implementation of	The BPA applies to the land recognising that the land is in an area of low bushfire hazard. The subdivision will implement the current
bushfire protection measures and where possible reduce the bushfire risk overall.	regulations pertaining to bushfire construction, setbacks and vegetation management, which will decrease the overall threat to the subject site and surrounding lots.
Assessing and addressing the bushfire hazard posed to the settlement and the likely bushfire	Please refer to the Landscape Plan at Figure 5 (above);
behaviour it will produce at a landscape, settlement, local, neighbourhood and site scale, including the potential for neighbourhood-scale destruction. Assessing alternative Low Risk locations for	the Local Plan at Figure 6, and Neighbourhood conditions considered in Figures 7 with the Site conditions shown in Figure 8. The landscape is consistent with a Landscape Type Two (DELWP, 2017:14) with access and egress readily available and the onsite bush reserve 'isolated' from surrounding vegetation. This reduces the bushfire threat from the broader landscape. The conditions from a neighbourhood and local scale can also be mitigated given the increasing urban development surrounding the site.
settlement growth on a regional, municipal, settlement, local and neighbourhood basis.	• The proposal contemplates the subdivision of land that evidences one lot assessed as BAL29 and lot 306 as BAL40 given their proximity to the bushland reserve. Once the understory weeds are removed, there will be a canopy separation between some of the outer vegetation proximate to the developable lots and reduced biomas within

the reserve, which will address vertical and

horizontal continuity of vegetation and impede the spread of any fire, should one ignite in or to the wets of the bushland reserve.

 The proposal increases resilience by applying a prescribed management to the defendable space across the land, which benefits the existing residential lots adjacent to the subject site.

Not approving any strategic planning document, local planning policy, or planning scheme amendment that will result in the introduction or intensification of development in an area that has, or will on completion have, more that BAL-12.5 rating under AS3959:2009.

- Perhaps the most important element of clause 13.02 as it empowers the Responsible Authority to refuse a permit application until it is satisfied with the bushfire protection measures being implemented.
- The proposal contemplates a statutory application only, and is not a strategic proposal.
- This report demonstrates that the risk of bushfire should not be a reason for refusal.

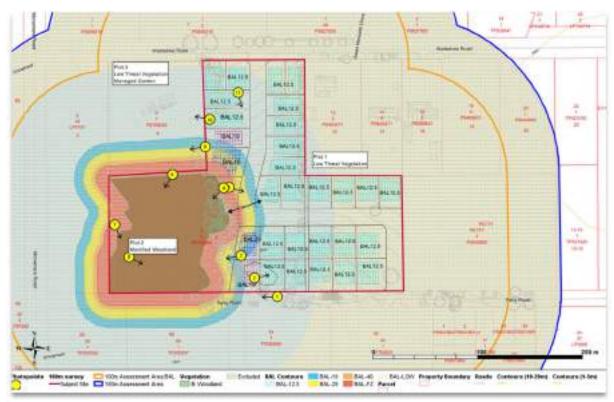


FIGURE 8 (ABOVE) – BAL CONTOUR PLAN SHOWING THE PROPOSED SUBDIVISION, MOST LOTS CAN ACHIEVE BAL 12.5 AS PER THE REQUIREMENTS ASSOCIATED WITH SETTLEMENT PLANNING; LOT 213 WILL ACHIEVE BAL19; LOT 214 WILL ACHIEVE BAL29 AND LOT 309 IS CLASSIFIED AS BAL40 ONLY BECAUSE THE SOUTHWESTERN PORTION OF THE BUILDING ENVELOPE IS LOCATED IN THE AREA DESIGNATED AS BAL40. NORTH-FACING ELEVATIONS OF A DWELLING COULD BE CONSTRUCTED WITH MATERIALS THAT MEET BAL29 CONSTRUCTION CLASSIFICATIONS GIVEN THEY WOULD COMPLY WITH THE SHEILDING PROVISIONS OF AS3859:2018.

<u>Site conditions</u> (Please refer to the BAL Map above generated by *FireMaps, 2025*) – The site features a gentle downward slope from the high point adjacent to Wattletree Road down toward Petty Road. The site is dominated by grazed pasture with onsite livestock maintaining the grass in a Low Threat state consistent with 2.2.3.2 (f), *AS3959:2018 Construction of buildings in Bushfire Prone Areas.* The

bushland patch featuring a measurable area of 12,000sqm is located in the southwest portion of the site and is being preserved and vested to Council. This is consistent with the Strategic Framework Plan for Bunyip (Figure 5, page 14, Bunyip Township Strategy, September 2009).

Portions of the site is consistent with a low risk location having a radiant heat flux of less than 12.5 kilowatts/square metre under AS3959-2018 (Construction of Buildings in Bushfire Prone Areas, Standards Australia, 2020) as indicated by the BAL Contour Map above and identified by the BAL 12.5, generated by FireMaps, 2025. Sites located in the vicinity of the proposed bushland reserve exhibit higher BAL ratings however, it is salient to note that the reserve is an isolated pocket of vegetation that is modified Woodland (AS3959:2018) where much of the midrange canopy is identified weed species (sweet pittosporum) which will be removed therefore reducing the risk profile of the reserve. The canopy of the trees located on the eastern fringe of the bushland reserve will achieve a separation of 5 metres from similarly mature trees further west, effectively reducing the capacity of fire transfer from tree to tree via the canopy. Given the isolated nature of the reserve, it is highly unlikely to contribute significant bushfire risk, despite the proximity of proposed developable lots to the east of the reserve. It should also be noted that if the application were subject to the BMO and the requirements of clause 53.02 the subdivision would be assessed as a Pathway 3 in clause 53.02 and be required to show a capacity to meet the defendable space requirements of in columns A, B, or C (Table 2), which provides for a maximum Bushfire Attack Level (BAL) of 29. It should be noted that the BAL for all lots other than 305, 306, 213 and 214 achieve BAL 12.5. The removal of weed species located on the eastern fringe of the bushland reserve will reduce the extent of BAL 29 contours and effectively reduce the bushfire risk to those lots adjacent to the reserve. Lot 214 is located to the east of the reserve and the western portion of the building envelope is subject to a BAL29. Lot 306 is shown as achieving BAL40 as the building envelope has been extended to the south, and encroaches into the BAL contours for BAL40 (orange band in the FireMap above). An additional BAL should be undertaken for construction for Lot 306 however, it is likely that the shielding provisions of AS3959:2018 could be applied, meaning north-facing elevations could be constructed to BAL29 as they would be shielded from exposure to the direction of the threat (to the south west).

GPS embedded photos (refer below) that correlate to the *FireMap* above clearly evidence the modified nature of the Woodland vegetation classification (AS3959:2018) on the eastern fringe and within the Bushland Reserve. Photos 3, 4, 6, 7 and 8 (below: clockwise from top left) show sweet pittosporum and other mid canopy shrubs that are identified as weeds in the Arboricultural Report (*Healesville Plants*, June 2023, as amended) and can be removed without a permit. Their removal will improve the integrity of the bushland reserve and mitigate the localised risks associated with bushfire.

This copied document is made available for the purpose of the planning process as set out in the Planning one Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

*Please read in conjunction with the Bushfire Attack Level Report provided by *Nobelius Land Surveyors*, dated June 2023. It should be noted that AS3959 recommends that a conservative approach be applied to the determination of the Bushfire Attack Level hence the BAL 29 rating (which will likely be reduced once understorey weed species are removed as per the recommendations of the Ecologist report) with the majority achieving BAL 12.5.

*Please refer to additional comments contained in **Section 9** of this report that address clause 71.02-3 Integrated Decision Making.

Access for emergency services to the site, and egress options from the site are consistent with the standards of clause 53.02 and the strategies of clause 21.02-4 Bushfire management. Petty Road to the south and Wattletree Road to the north provide connections to Hope Street to the east, which provides a north to south thoroughfare. The proposed subdivision implies a modest increase to the residential population of Bunyip in an area that provides service provision, interconnected road networks where the risk of bushfire is mitigated.

AREAS OF HIGH BIODIVERSITY CONSERVATION VALUE

The objective here is to ensure settlement growth and development approvals can implement bushfire protection measures without unacceptable biodiversity impacts by discouraging settlement growth and development in bushfire affected areas that are of high biodiversity conservation value.

The land is adjacent to a bushland reserve where understorey vegetation and weeds have grown unchecked. The removal of the weeds species will reduce understory vegetation; addressing vertical and horizontal continuity of the canopy. This will reduce bushfire risk and also support the vitality of indigenous species.

This copied document is made available for the purpose of the planning process.

as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

There are two lots that meet the requirements of BAL 29 conditions given the topography of the land and their proximity to the bushland reserve. Construction to BAL29 reduces the risks associated with ember attack. Th balance of lots meet the requirements of BAL12.5 (Please refer to Figure 8, above) and mitigate the bushfire risk posed by the surrounding land, particularly with regard to vegetation management.

USE AND DEVELOPMENT CONTROL IN A BUSHFIRE PRONE AREA

REQUIREMENTS RESPONSE

Use and development control in a Bushfire Prone Area designated in accordance with regulations made under the Building Act 1993, bushfire risk should be considered when assessing planning applications for the following use and development:

- Subdivision of more than 10 lots
- Accommodation

When assessing a planning permit application for the above uses and development:

- Consider the risk of bushfire to people, property and community infrastructure.
- Require the implementation of appropriate bushfire protection measures to address the identified bushfire risk.
- Ensure new development can implement bushfire protection measures without unacceptable biodiversity impacts.

- Development controls do apply as the proposal contemplates the subdivision of land (more than 10 lots). This report demonstrates that the subdivision is suitably located on land zoned for residential land use and development and meets the requirements of clause 13.02-1S including the long term intent of the use and development controls.
- This report provides responses to the requirements of clauses 13.02, including an assessment of likely fire behaviour and risk to future residents. Please refer to Figures 5 and 6, on page 28.
- In the context of strategic planning decisions, these strategies need to consider the 'net increase in risk to existing and future residents'. As it relates to the objectives at Clause 13.02-1S of the Planning Scheme, it is necessary to ensure that the protection of human life is prioritised when decisions are made. However, the strategies listed at Clause 13.02-1S in the Planning Scheme are not 'mandatory requirements' and it is not necessary to 'tick every box'. It is more important to ensure that decisions are consistent with the State policy objectives and build resilient communities.

PLANNING POLICY DOCUMENTS TO BE CONSIDERED	RESPONSE
Any relevant approved state, regional and municipal fire prevention plan.	Fire prevention measures included in the Metropolitan Bushfire Management Strategy 2020 ensures roadsides and public space is managed; fire suppression is managed through planned burns, slashing, spraying and mulching.
AS3959:2018 Construction of Buildings in Bushfire Prone Areas (Standards Australia, 2018).	Bushfire Attack Levels employ this standard to determine the BAL for the site. Section 7 (for BAL29); Section 6 (for BAL19) and Section 5 (for BAL12.5) of the standard has regard to the construction of a dwelling in accordance with BAL requirements.

Living in bushfire-prone areas – CSIRO &	This is the handbook to AS3959, which does not
Standards Australia (SAA HB 330-2009,	need to be considered in the planning proposal.
December, 2009)	
Any Bushire Prone Area map prepared under the	The updated Bushfire Prone Area mapping has
Any Bushire Prone Area map prepared under the Building Act 1993 or regulations made under the	

CLAUSE 15 BUILT ENVIRONMENT AND HERITAGE

Clause 15 Built Environment and Heritage has the objective to ensure planning delivers built form that is of high quality and efficient, responsive to the surrounding landscape and character including its associated risks, protective of heritage and provides the functionality required by the community. The proposal aligns with the objective of **Clause 15.01-3S Subdivision design**, which is:

• To ensure the design of subdivisions achieves attractive, safe, accessible, diverse and sustainable neighbourhoods.

The proposal contemplates the staged subdivision of the land to produce 30 residential lots and the creation of a temporary retarding basin located within 1km of the commercial centre of Bunyip. The subdivision seeks to balance the provision of attractive lot design through generously sized allotments that retain that vegetation identified as significant and structurally viable. Centrally located access with connection to Petty Road and Wattletree Road and provides multiple entry and exit points favoured by bushfire mitigation strategies. The subject sites are conveniently located within walking range of reserves and sporting facilities, which promotes the objective of Clause 15.01-4S Healthy neighbourhoods.

Clause 15.01-5S Neighbourhood character has the objective to:

 ..recognise, support and protect neighbourhood character, cultural identity, and sense of place.

The immediate area is characterised as contributing to New Residential Estates within the Strategic Framework Plan (Figure 5, Bunyip Township Strategy, September 2009) with the capacity to accommodate the projected growth of residential (infill) development within the Bunyip township boundaries while preserving existing township character through lot size mechanisms (refer to Sections 4.7 Objectives and 4.8 Policy, Bunyip Township Strategy, September 2009).

CLAUSE 18 TRANSPORT

Clause 18 Transport has regard to the provision of 'connectivity' for residents to social and economic opportunity which facilitates reliable movement for people and goods and supports environmental sustainability, health and wellbeing. Of salience here are the strategies of Clause 18.0-1S Land use and transport integration that seeks to reduce distances people have to travel between their place of residence and their employment, education, service providers, which promotes mobility within and between communities. Our proposal implies infill residential development within the existing township boundary whereby residents would be within 1km of the commercial centre of Bunyip. This promotes non-car dependant mobility and supports active living and improved wellbeing synonymous with the 20-minute neighbourhood (Clause 18.01-2S Transport system) and sustainable and safe

transport (Clause 18.01-3S), and the strategies of Clause 18.02-1S Walking, Clause 18.02-2S Cycling and Clause 18.02-3S Public Transport given Bunyip Rail Station is within 1 km of the subject site.

CLAUSE 19 INFRASTRUCTURE

Clause 19 has regard to the provision of infrastructure to our growing community. Clauses 19.03-2S Infrastructure design and provision and 19.03-3S Integrated water management has the objective to provide timely, efficient and cost-effective development infrastructure that meets the community needs by integrating planning and engineering design of new subdivisions and development. In this regard our proposal has acknowledged that the provision of drainage is of salience and must be catered for on the land. The design has provided for a Temporary Retarding Basin in the southern portion of Stage 2 where the outfall is located at the lowest point of the lot. Please read our response to the requirements of Clause 19 in conjunction with the Stormwater Management Strategy, dated 29th March 2023, provided by DPM Consulting Group.

RELEVANT & INCORPORATED DOCUMENTS

BUNYIP TOWNSHIP STRATEGY 2009

The Bunyip Township Strategy, 2009 (referred to as the strategy hereafter) outlines the following vision for Bunyip:

A rural township with extensive recreational opportunities, potential for substantial growth and a commercial and retail centre providing an extensive range of services to the township and nearby residents.

The Bunyip Township will contain a range of housing types that respect the rural character of the town and the natural landscape. Open space areas will be diverse, to allow access for active and passive recreation while ensuring the protection of remnant vegetation and wildlife corridors to allow the movement of species throughout the landscape.

Of the many strategic objectives outlined within the strategy, the following are particularly relevant to this proposal:

- Provide for the growth of Bunyip as an attractive rural township
- Maintain the rural township character
- Provide a range of lot sizes and types to accommodate a mix of household and lifestyle types
- Protect and enhance the environment, especially those elements which contribute to the character of the Bunyip Township

The strategy identifies the following existing pattern of residential development in Bunyip (as per 2009 when the strategy was implemented):

Residential development in Bunyip reflects a number of housing styles from Edwardian to modern design with the initial stages of the present day township site having been surveyed during the 1860s. A key characteristic of Bunyip is the significantly higher proportion of large lot sizes compared with other townships. Lot sizes generally range from 500 square metres to 1.5 hectares and the larger lots on the fringe of the township help to integrate the township with

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By taking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

the surrounding rural properties. Lot in Bunyip's residential precincts predominately retain single-storey detached dwellings with generous setbacks from the street.

The strategy identifies the subject site (shown as a white star) as being located within Residential Precinct 4 – Established Rural Residential Areas, as per the map below:

THE BUNYIP EXISTING CHARACTER PRECINCTS – TOWNSHIP CHARACTER ASSESSMENT MAP (BUNYIP TOWNSHIP STRATEGY, 2009).

The subject site is mapped as land designated for new residential estates (Precinct 2 – New Residential Estates) in the Strategic Framework Plan, an extract of which has been provided below:

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is shiply promoted.

STRATEGIC FRAMEWORK PLAN (BUNYIP TOWNSHIP STRATEGY, 2009)

Township character assessments of preferred character precincts delineated four preferred character residential precincts for Bunyip. The subject site is mapped within the new residential estates precinct (precinct 2), which has the following preferred character:

New residential estates will retain the rural character with a high proportion of large lots, combined with wide nature strips and roads, and a significant canopy of street trees. New development will integrate with the sloping and undulating terrain and be designed and constructed to a high standard.

Table 10 of the strategy outlines the Precinct character guidelines for Precinct 2. A response has been provided by Nobelius Land Surveyors to demonstrate how the proposal satisfies Council's vision for the future residential estates precinct:

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

LOT CHARACTERISTICS

- 80% of lots to remain larger than 700sqm
- Minimum lot size of 600sqm
- Minimum front setback of 7 metres
- Minimum side boundary setback of 2.5 metres
- Maximum building site coverage should not exceed 40% of lot
- Minimum lot width of 18m

Response

The proposed lot configuration and sizes achieve the preferred lot characteristics outlined above.

The proposal achieves 87% of lots with an area that exceeds 700sqm. The proposal includes the creation of 30 lots, and only 4 of these lots are less than 700sqm.

No lots are smaller than 590m².

All lots can achieve a building envelope with a minimum front setback of 7 metres.

All lots can achieve a building envelope with a minimum side boundary setback of 2.5 metres.

All lots can achieve a building envelope that does not exceed 40 per cent of the lot.

All lots (with the exception of 312) have achieved a minimum lot width of 18m.

GENERAL

- Encourage a diversity of development styles
- Maintain a sense of spaciousness between allotments of the residential areas through
 - 1. No front fences or if fenced, low front fences or open wire fences to allow gardens and nature strips to merge.
 - 2. Providing sufficient open space or garden areas.
 - 3. Retaining existing vegetation.
 - 4. Providing new trees and garden spaces.
- Discourage small allotments of less than 600sqm
- Require a landscape plan to accompany all applications for new subdivisions
- Vegetation along McNamara and Petty Road to be retained.
- Maintain wide street reserves of 16-18m for local streets.
- Retain treed area in the western part of the precinct.
- Maintain a rectangular street and lot layout.
- Ensure protection and conservation of native vegetation including street trees and roadside vegetation.
- Ensure all new developments include extensive street tree plantings at an early stage of development.
- Encourage the inclusion of native vegetation and garden space for private and commercial development.
- Maintain a high level of quality in the design and construction of new buildings as well as continuity with the character of the areas existing built form.
- Ensure building height respects the existing character of the surrounding area.
- Residential developments should not include gated street formats but should connect visually and physically to the surrounding areas.
- Developments to integrate with the existing landform.

Response

A Functional Layout Plan has been prepared *TaylorMiller/EngMil*, *August 2025*, that indicates the road design and width to accommodate street tree planting and a sense of spaciousness consistent with the rural residential character of Bunyip.

The proposal includes the removal of trees with trees (identified as 59-83 and A to I) in the council managed road reserve to the north of the subject site along Petty Road. The character guidelines for this particular precinct outline that vegetation in the road reserves is required to be retained, and that native vegetation should be protected however, a meeting with Council engineers (dated 27th February 2025) has confirmed that the provision of services and necessary infrastructure is not commensurate with the preservation of road-side vegetation. The lot sizes allow for building envelopes that have sufficient setbacks for garden space and avoid impacts on native vegetation where possible.

The proposed subdivision of the land into 30 lots does not include lots smaller than 590m².

The local street to provide access to the lots in the subdivision is proposed to be a width of 16m. The rectangular street and lot layout has been reinforced through the proposed subdivision.

No development of dwellings is proposed as part of this subdivision application.

SUBDIVISION

- Demonstrate how the new subdivision relates to the existing and intended use and development of adjoining land.
- Develop clear, legible road networks incorporating the existing grid layout which provide a high level of internal connectivity and external linkages for local vehicle, pedestrian and bicycle movements.
- Maintain generous street, footpath and easement widths in new developments.
 Provide a minimum width for internal streets of 7.3 metres to allow for parking on either side and access for emergency vehicles.
- Discourage cul-de-sacs and, if used, they should be connected through to another street by a wide reserve and path for safe pedestrian and bicycle access.

Response

The proposed subdivision is consistent with the residential subdivisions occurring on the land immediately adjoining the subject site. The proposed street network reinforces the existing grid layout and is able to connect with the existing local vehicle, pedestrian and bicycle networks.

Subsection 4.6 identifies the following key issues relevant to the development of residential land in Bunyip:

Bunyip has several large areas of undeveloped land within the township boundary. Developing
vacant land within the township will provide the opportunity to increase the township's
population and therefore create economic and social benefits, making the town more
sustainable in the long term.

This copied document is made available for the purpose of the planning process as set out in the Planning one Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is shielly promoted.

- While increasing the number of lots to increase the population is important, the general character of Bunyip is that of a rural township and it is important to maintain that character in all new developments.
- Increasing the diversity of lots and dwelling types will allow people a broader range of housing options, as well as accommodate existing residents of Bunyip as they age and their housing needs change.

Subsection 4.7 outlines the objectives to be met by future residential development of the town:

- Facilitate growth of residential development in Bunyip to a population of approximately 3,500 people.
- Ensure that the long-term residential capacity and township boundaries are clearly defined.
- Ensure the long-term sustainability of the community by providing residential development for a range of lifestyle opportunities.
- Ensure that infill residential development is integrated and respects the existing character of the township.
- Maintain generous street, footpath and easement width in new developments.

The proposal contemplates residential subdivision within the township boundary that will enable residents to access township amenity and services. The subdivision design illustrates a sensitivity to the existing character of Bunyip while accommodating for population growth and long term economic sustainability.

This copied document is made available for the purpose of the planning process.

as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By taking a copy of this document you acknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

8. PARTICULAR PROVISIONS

The relevant particular provisions/documents that will be addressed are identified below:

- Clause 52.12 Bushfire exemptions
- Clause 52.17 Native vegetation
- Clause 53.01 Public open space contribution and subdivision
- Clause 53.18 Stormwater management in urban development
- Clause 56 Residential Subdivision

CLAUSE 52.12 BUSHFIRE EXEMPTIONS

Clause 52.12 Bushfire protection exemptions seek to facilitate the removal of vegetation in specific circumstances to support and protect human life and property. Clause 52.12-1 Exemptions to create defendable space around buildings used for accommodation and Clause 52.12-2 Exemption for vegetation removal along a fence line provide exemptions that enable the removal, destruction of lopping of vegetation within 10m metres of an existing building to create defendable space and along a boundary fence between properties and in different ownership if all the requirements are met:

- The fence must be located in an area that is designated as a bushfire prone area under the Building Act 1993.
- The fence must have been constructed before 10 September 2009. The internal fencing has been on the prior to 2009.
- The clearing alongside both sides of the fence when combined must not exceed 4 metres in width, except where land has already been cleared 4 metres or more along one side of the fence, then up to 1 metre can be cleared along the other side of the fence.

The site is located within the BPA (as indicated previously, refer to the assessment to the requirements of clause 13.02-1S) and the existing fence lines were constructed prior to 10 September 2009 however, the location of the trees that require removal (and offsetting) do not meet the requirements of clause 52.12-2.

Please read in conjunction with the *Arboricultural Impact Assessment dated June 2023*, and amended March 2025, provided by *Healesville Plants*.

CLAUSE 52.17 NATIVE VEGETATION

Clause 52.17 has the following purposes:

- To ensure that there is no net loss to biodiversity as a result of the removal, destruction or lopping of native vegetation. This is achieved by applying the following three step approach in accordance with the Guidelines for the removal, destruction or lopping of native vegetation (Department of Environment, Land, Water and Planning, 2017) (the guidelines):
 - 1. Avoid the removal, destruction or lopping of native vegetation.
 - 2. Minimise the impacts from the removal, destruction or lopping of native vegetation that cannot be avoided.
 - 3. Provide an offset to compensate for the biodiversity impact if a permit is granted to remove, destroy or lop native vegetation.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

• To manage the removal, destruction or lopping of native vegetation to minimise land and water degradation.

Pursuant to Clause 52.17 Native Vegetation, locally indigenous, non-planted vegetation requires a permit (and offset) to remove, destroy or lop. *Healesville Plants* have prepared a *Native Vegetation Removal Report* of all vegetation on the subject site and adjacent to the subject site and have found that Clause 52.17 will apply to several trees.

As per the Native Vegetation Report by Healesville Plants dated June 2023 (revised March 2025) Trees 1, 39-47 and 61-86 are indigenous trees and require offsetting.

AVOID, MINIMISE AND OFFSET

As per the NVR, page 23, tree removal can not be avoided on this site. Exotic weed species have been referred for removal to reduce BAL requirements and risk associated with bushfire. Of the 86 trees proposed for removal, 29 are exotic species. While Tree 1 has been shown to be offset as a consequence of proximity of construction, it will be retained. It was previously proposed to retain trees in the Petty Road reserve with crossovers designed to avoid trees and footpaths shown to be above grade and meandering around trees. Despite several iterations of plans and revisions made in an attempt to retain these trees, the provision of services has made the retention of these trees unviable. New street trees can be planted in the road reserve and it has been recommended in the NVR that these trees be of the same species and provenance. Please read in conjunction with the revised NVR provided by *Healesville Plants*, March 2025.

Offsets are determined via an Intermediate Pathway and requires 0.363 hectares to be offset. Please refer to NVRR ID:311_20240815_JGB, extract below.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

Report details

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

Date created: 15/08/2024

Local Government Area: CARDINIA SHIRE

Registered Aboriginal Party: Bunurong

Coordinates: 145.70861, -38.09227

Address: 8 WATTLETREE ROAD BUNYIP 3815

Regulator Notes

Removal polygons are located:

Summary of native vegetation to be removed

Assessment pathway	Intermediate Assessment Pathway		
Location category	Location 1 The native vegetation extent map indicates that this area is not typically characterised as supporting native vegetation. It does not meet the criteria to be classified as Location Category 2 or 3. The removal of less than 0.5 hectares of native vegetation in this area will not require a Species Offset.		
Total extent including past and proposed removal (ha) includes endangered EVCs (ha): 0	0.363	Extent of past removal (ha) Extent of proposed removal - Patches (ha) Extent of proposed removal - Scattered Trees (ha)	0.152
No. Large Trees proposed to be removed	4	No. Large Patch Trees No. Large Scattered Trees	3
No. Small Scattered Trees	0		

The following offsets are required should a permit be granted:

Any approval granted will include a condition to secure an offset, before the removal of native vegetation, that meets the following requirements:

General Offset amount 1	0.152 General Habitat Units	
Minimum strategic biodiversity value score ²	0.442	
Large Trees	4	
Vicinity	Melbourne Water CMA or CARDINIA SHIRE LGA	

CLAUSE 53.01 PUBLIC OPEN SPACE CONTRIBUTION AND SUBDIVISION

A subdivision of the land attracts the requirement of a contribution to the council for (the provision of) Public Open Space the value of which is calculated as a percentage of the value of the land intended to be used for residential development. Clauses 53.01-1 and 53.02-2 (under section 18 (8)(a) of the Subdivision Act 1988) set out exemptions from Public Open Space requirements specified in the scheme including where the subdivision is:

- of a building used for residential purposes where each lot contains part of the building. The building must have been constructed or used for residential purposes immediately before 30 October 1989 or a planning permit must have been issued for the building to be constructed or used for residential purposes immediately before that date.
- a commercial or industrial building provided each lot contains part of the building.
- for the purpose of excising land to be transferred to a public authority, council or a Minister for a utility installation.
- subdivides land into two lots and the council considers it unlikely that each lot will be further subdivided.

The proposal does not qualify for any of the above-mentioned exemptions therefore the subdivision of land will attract a Public Open Space Contribution of the value of 8 per cent of the total value of the land, as per the requirements of the schedule to clause 53.01.

Please note that the area that measures approximately 12,000sqm of retained bush located in the southwestern portion of the site will be vested to council as a bushland reserve. It is requested that the valuation of land take this into account with the contribution consistent with the <u>subtraction of</u> the area of this land from the calculation of the Public Open Space Contribution.

CLAUSE 53.18 STORMWATER MANAGEMENT IN URBAN DEVELOPMENT

The purpose of clause 53.18 is to ensure that stormwater in urban development is managed in a way that mitigates the impacts of stormwater on the environment, property and public safety, and to provide cooling, local habitat and amenity benefits. Clause 53.18-1 states that this clause applies to an application under a provision of a zone to subdivide land, construct a building, or construct or carry out works, other than for an application to *subdivide land in a residential zone for residential purposes*. While an assessment of the proposal against the requirements of clauses 53.18-4 to 53.18-6 is not required, a Stormwater Management Plan has been provided by *DPM Consulting Group, dated 29th March 2023, as amended in 2025.* This Management Strategy responds to Melbourne Water Drainage Scheme. The Stormwater management strategy proposes the viability of stormwater quality treatment to Best Practice Environmental Management objectives and investigates Integrated Water management (IWM) opportunities in accordance with the Integrated Water Management Framework for Victoria and with Council's Integrated Water Management Plan (2014).

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

CLAUSE 56 RESIDENTIAL SUBDIVISION

Clause 56 is applicable to this proposal, and has the following purposes:

- To implement the Municipal Planning Strategy and the Planning Policy Framework.
- To create liveable and sustainable neighbourhoods and urban places with character and identity.
- To achieve residential subdivision outcomes that appropriate respond to the site and its context for:
 - o Metropolitan Melbourne growth areas.
 - o Infill sites within established residential areas.
 - Regional cities and towns.
 - o To ensure residential subdivision design appropriately provides for:
 - Policy implementation
 - Liveable and sustainable communities.
 - Residential lot design.
 - Urban landscape.
 - Access and mobility management.
 - Integrated water management.
 - Site management.
 - Utilities.

Clause 32.08 General Residential Zone states that applications for the subdivision of land into 16-59 lots must meet all objectives and standards in Clause 56, except for Clauses 56.03-1 to 56.03-3, 56.03-5, 56.06-1 and 56.06-3.

An assessment of the proposal against the relevant objectives and standards contained within Clause 56 is provided below:

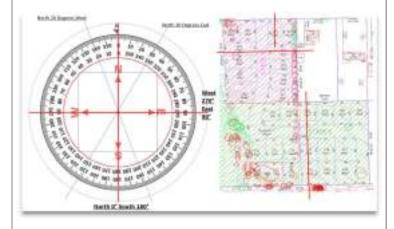
CLAUSE	RESPONSE
56.01 SUBDIVISION SITE AND CONTEXT DESCRIPTION AND DESIGN RESPONSE	
56.01-1 Subdivision site and context description	Please refer to Section 3 Subject site and surrounding locality within the report (above) and the Feature Plan lodged in conjunction with this proposal.
56.01-2 Subdivision design response	Please refer to Section 4 The Proposal and Section 7 Planning Controls and our response to clause 15.01-3S within the report (above) and the proposed plan of subdivision lodged in conjunction with this proposal.
56.02 POLICY IMPLEMENTATION	
56.02-1 Strategic implementation objective	Complies with Standard C1 Please refer to Section 5 Planning Controls and our responses to State and Local policies in Section 7, Relevant Incorporated Documents in Section 7 and Particular and General Provisions in Sections 8 and 9 (above).

This copied document is made available for the purpose of the planning process as set out in the Planning one Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

56.03 LIVEABLE AND SUSTAINABLE COMMUNITIES	
56.03-1 Compact and walkable neighbourhoods' objective	Standard C2 NA
56.03-2 Activity Centre objective	Standard C3 NA
56.03-3 Planning for community facilities objective	Standard C4 NA
56.03-4 Built environment objective	Complies with Standard C5 A description of the elements that contribute to the identity and character of Bunyip have been provided in Section 3 Subject site and surrounding locality and a response of the proposal to the existing character has been provided in Sections 7 and 8.
56.03-5 Neighborhood character objective	Complies with Standard C6 The proposal complies with the relevant standards and objectives under this clause. Please read in conjunction with our response to Clause 15.01-5S Neighbourhood character, the Bunyip Township Strategy (September 2009) and Clause 21.08-2 Bunyip (Sections 6 and 7 above).
56.04 LOT DESIGN	
56.04-1 Lot diversity and distribution objectives	Complies with Standard C7 The proposal provides for thirty (30) additional lots that range between 590m² to 1,043m² with the majority, over 87% meeting minimal lot area requirements (minimum of 700sqm lots) specified in the Bunyip Township Strategy (Sept, 2009) and are comparable to the area of other recent subdivisions in the vicinity, notably on Jasmine Street to the south east and more generous than those lots that address Geranium Rise and Magnolia Way to the south. The subject site is located within 1.5kms of the Bunyips' commercial centre and Railway Station.

with a maximum of two stories can achieve setbacks that protect solar access of existing dwellings and any future onsite development; avoid easements and protect existing onsite vegetation.

The standard requires that lots in excess of 500m² should be able to contain a rectangle measuring 10 metres by 15 metres, equating to an area of 150m².


Lot 306 has a generous area of 1,043m² and features a Habitable Building Envelope that measures 408m² (an area more generous that the required area of 150m²) and ensures built form is separated from the vegetation to the southwest building and can meet regulation requirements commensurate with BAL29 (AS3959:2018). The lot can accommodate a Habitable Building Envelope that is located adjacent to the northern title boundary 10m x 15m, though the habitable building envelope is larger in area than the minimum requirements. The lot also features a Non-Habitable Building Envelope that allows for outbuildings and other nonhabitable built form such as pools.

As required by standard C8; the proposed building envelope of lot 306 specifies a relevant siting requirement and is setback from the front boundary by 7 metres and from all side boundaries by 2.5 metres, as is the adjoining lot 305, and has the capacity of meeting standards A10 to A15 of clause 54.

56.04-3 Solar orientation of lots objective

Complies with Standard C9

The proposal positions lots in both north/south and east/west orientation with dimensions adequate to protect solar access.

Of the 30 lots, 22 are orientated with their long axis within the range north 20 degrees west to north 30 degrees east, which equates to 73% of the lots.

The lots are adequately sized with BE's suitably setback from boundaries to ensure solar access.

56.04-4 Street orientation objective

Complies with Standard C10

The proposed lots are orientated to either the proposed internal road that dissects the lot, or to Petty Road (lots 208-214) or to Wattletree Road (lots 301-302 and 311-312). Lots

	will take benefit from access to, and surveillance of, the Reserve No.1 contained within the proposal.
56.04-5 Common Area objective	Standard C11. NA - No Common Property is proposed. The road network enables public access and facilitates connectivity. The proposed bushland reserve will be vested to Council and managed by Council as a public open area.
56.05 URBAN LANDSCAPE	
56.05-1 Integrated urban landscape objective	Complies with Standard C12 A road is proposed that dissects the proposed subdivision which features widths and design that is consistent with 'Access Roads' in Bunyip and will incorporate street trees, lighting and pedestrian pathways into the landscape design. The 'Reserve No. 1' provides for the protection of the existing flora and fauna on the site and in the vicinity with the weeds species identified so they can be removed. The temporary Retarding Basin will continue to provide for onsite stormwater attenuation and a mechanism to settle suspended particles prior to them leaving the site and entering the stormwater drainage to the south of the site.
56.05-2 Public open space provision objectives	Standard C13 The Reserve No. 1 is technically Public Open Space as it will be accessible to the public. It will contribute to the preservation of the rural residential character of Bunyip and the relationship that future residents have with their surroundings. The benefits of Public Open Space are multiple including the provision of shading and the reduction of urban heat island effects; provide habitat for flora and fauna; reduce motor traffic noise and promoting active mobility (metropolis.com).
56.06 ACCESS AND MOBILITY MANAGEMENT	
56.06-1 Integrated mobility objectives	Complies with Standard C14 The road will be designed to incorporate a footpath within the road reserve to facilitate walkability, cycling, and connectivity to Petty Road in the south and Wattletree Road in the north. This will contribute to the footpath network between the subject site and the commercial centre of Bunyip and Bunyip Railway Station. Please read in conjunction with the Functional Layout Plan provided by TaylorMiller (amended), March 2025.
56.06-2 Walking and cycling network objectives	Complies with Standard C15 The surrounding street network features interlinked pavements and footpaths that can be used to access the commercial centre to the south, and Bunyip Railway Station. The proposed road will feature a footpath that provides connectivity to future walking and cycling networks on Petty

	Road and Wattletree Road. The foot path/s are designed to Australian Standards and include permeable nature strips to encourage landscaping.
56.06-3 Public transport network objective	NA – Standard C16
56.06-4 Neighbourhood street network objective	Complies with Standard C17 The Functional Layout Plan provided by <i>TaylorMiller</i> (as amended) evidences the proposed road and footpath which are designed to Australian Standards and function as Local Access Streets (as per the definition in the Bunyip Township Strategy, September 2009: page 35) and include permeable nature strips to encourage landscaping. They provide connectivity to the existing walking and cycling networks on the roads to the east and south.
56.06-5 Walking and cycling network detail objectives	Complies with Standard C18 It is acknowledged in the Bunyip Township Strategy (September 2009: 37-38) that the road and footpath network in Bunyip requires improvement to 'progressively upgrade local roads' requiring new subdivision proposals to provide connectivity of pedestrian and vehicular networks. The proposed through road achieves pedestrian and vehicular access (and egress via Petty and Wattletree Roads).
56.06-6 Public transport network detail objectives	NA – Standard C19
56.06-7 Neighbourhood street network detail objectives	Complies with Standard C20 The proposed road, "Road R-1" features a navigable width of 16 metres. This width is capable of accommodating emergency and waste vehicles and providing for shared paths, integrated water management, street landscaping including trees, lighting and infrastructure. The road is designed to accommodate minimum corner splays at the intersections with Petty and Wattletree Roads, consistent with the minimum requirements in Table C1 for Access Street – Level 1 widths. Please read in conjunction with the FLP provided by TaylorMiller/EngMil, dated August 2025 and the Traffic Impact Assessment by T&TS, dated February 2023.
56.06-8 Lot access objective	Complies with Standard C21. The proposed lots have vehicular street access consistent with those requirements for Access Street – Level 1 (Table C1). Please read in conjunction with the Traffic Impact Assessment provided by T&TS, February 2023, and the FLP provided by TaylorMiller/EngMil, Revision I.
56.07 INTEGRATED WATER MANAGEMENT	
56.07-1 Drinking water supply objectives	Complies with Standard C22 The supply of drinking water will be designed and constructed in accordance with the requirements, and provided to the

	boundary of all lots, to the satisfaction of the relevant water authority.
56.07-2 Reused and recycled water	Complies with Standard C23 The supply of reused and recycled water will be designed, constructed and managed in accordance with the requirements, and provided to the boundary of all lots to the satisfaction of the relevant water authority.
56.07-3 Wastewater management objective	Complies with Standard C24 Wastewater systems will be designed, constructed and managed in accordance with the requirements, consistent with the relevant approved domestic wastewater management plan, and provided to the boundary of all lots, to the satisfaction of the relevant water authority. Please read in conjunction with the Stormwater and Integrated Water Management Plan by DPM Consulting, dated 23 rd April 2025.
56.07-4 Stormwater management objectives	Complies with Standard C25 The urban stormwater management system has been designed and will be managed in accordance with the requirements and to the satisfaction of the relevant drainage authority. Please read in conjunction with the Stormwater Management Strategy dated 23rd April 2025 (as amended) provided by DPM Consulting Group. The proposed stormwater drainage system will be seamlessly integrated with the existing stormwater drainage infrastructure in the area and will accommodate flood modelling events specified within the standards. Stormwater Quality modelling using MUSIC by DPM Consulting demonstrates that the proposed Temporary Retarding Basin partially meets the BPEMG for clause 56.07. No water quality treatment is expected within the proposed development in anticipation of the delivery of the future drainage scheme asset WL/RB1, in accordance with the Bunyip West DSS.
56.08 SITE MANAGEMENT	
56.08-1 Site Management objective	Compliance with Standard C26 The proposal contemplates subdivision however, trenching to facilitate service provision and access construction will avoid TPZ's of any vegetation identified to be retained as per the recommendations of the assessing arborist report by Healesville Plants (amended), dated August, 2025. Waterways and drainage channels to the south of the site will be protected from runoff via the employment of the Temporary Retarding Basin, which will arrest runoff from the site to the land to the south of the site. Litter and construction waste will be collected and removed from site.
56.09 UTILITIES	
56.09-1 Shared trenching objectives	Compliant with Standard C27

	Shared trenching will be prioritised where appropriate and achievable.
56.09-2 Electricity, telecommunications and gas objectives	Complies with Standard C28 Electricity, telecommunications and reticulated water supply systems will be provided in shared trenches where possible with the requirements of the relevant servicing agency stipulated in any planning permit issued and provided to the satisfaction of the relevant authority.
56.09-3 Fire hydrant objective	Complies with standard C29 Fire hydrants will be provided not more than 120metres from the rear of each lot and no more than 200metres apart, to the satisfaction of the relevant authority.
56.09-4 Public lighting objective	Complies with Standard C30 Public lighting will be provided to the proposed road and fitted with energy efficient fittings. The public light will be designed according to Australian Standards LG-002: Lighting for Roads and Public Spaces.

This copied document is made available for the purpose of the planning process as sot out in the Planning one Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

9. GENERAL PROVISIONS

The relevant general provisions that will be addressed in this section are identified below:

- Clause 65 Decision Guidelines
- Clause 65.01 Approval of an Application or Plan
- Clause 65.02 Approval of an application to subdivide land
- Clause 71.02-1 Purpose of the Planning Policy Framework
- Clause 71.02-3 Integrated decision making

CLAUSE 65 DECISION GUIDELINES

Clause 65 states that the Responsible Authority must decide whether the proposal will provide acceptable outcomes in terms of the decision guidelines of this Clause. The decision guidelines of Clause 65.01 and 65.02 relating to the approval of an application or plan and an application to subdivide the land respectfully are relevant to this application.

CLAUSE 65.01 APPROVAL OF AN APPLICATION OR PLAN

The decision guidelines outlined in Clause 65.01 are applicable to this proposal, in particular:

- The matters set out in Section 60 of the Act.
- Any significant effects the environment, including the contamination of the land, may have on the use or development.

The land is not identified as being contaminated. The site constraints and considerations of the land including native vegetation, topography and any overland flows have been responded to throughout the design process.

- The Municipal Planning Strategy and the Planning Policy Framework.
- The purpose of the zone, overlay or other provision.
- Any matter required to be considered in the zone, overlay or other provision.
- The orderly planning of the area.

The planning considerations have been adequately addressed within this report in sections 4-7.

• The effect on the environment, human health and amenity of the area.

The proposed subdivision does not pose any foreseeable adverse impacts to the environment, human health or the amenity of the area. Any potential adverse impacts have been identified and responded to throughout the design process.

• The proximity of the land to any public land.

The proposed subdivision does not adversely impact any public land within the vicinity of the site.

• Factors likely to cause or contribute to land degradation, salinity or reduce water quality.

No foreseeable factors that may cause or contribute to land degradation, salinity or reduced water quality have been identified during the design process.

• Whether the proposed development is designed to maintain or improve the quality of stormwater within and exiting the site.

A stormwater and drainage assessment was undertaken as part of the design process, and the proposed subdivision design is responsive to the findings of the assessment.

The extent and character of native vegetation and the likelihood of it's destruction.

Native vegetation is proposed to be removed and will be offset as per the requirements of Clause 52.17 Native vegetation. The subject site in it's existing state is a highly modified landscape, with the majority of the site cleared for small scale agriculture and lifestyle living.

Whether native vegetation is to be or can be protected, planted or allowed to regenerate.

The proposed subdivision provides landscaping buffers and lot sizes with dimensions appropriate for the planting and establishment of native vegetation. Additionally, the Reserve No. 1 will provide for opportunities to preserve native vegetation and provides habitat for indigenous fauna.

• The degree of flood, erosion or fire hazard associated with the location of the land and the use, development or management of the land so as to minimise any such hazard.

The subject site is not prone to flood or erosion. The site is mapped as a designated bushfire prone area and the risk has been further addressed in our response to Clause 13.02 and 71.02-3.

• The adequacy of loading and unloading facilities and any associated amenity, traffic flow and road safety impacts.

Loading and unloading facilities are not relevant to this proposal.

• The impact the use or development will have on the current and future development and operation of the transport system.

The proposed subdivision does not adversely impact on the current and future development and operation of the transport system.

CLAUSE 65.02 APPROVAL OF AN APPLICATION TO SUBDIVIDE LAND

The decision guidelines outlined in Clause 65.02 have been considered in the proposed design. A response has been provided where applicable to demonstrate how the proposal meets the decision guidelines outlined below:

- The suitability of the land for subdivision.
- The existing use and possible future development of the land and nearby land.
- The availability of subdivided land in the locality and the need for the creation of further lots.

The land is zoned for residential purposes and has been designated for future residential development in the Bunyip Township Strategy 2009. Surrounding land is experiencing infill residential development, and the lot sizes and street network of the proposed subdivision will integrate with and compliment the emerging character of the new residential precinct.

• The effect of development on the use or development of other land which has a common means of drainage.

A stormwater and drainage strategy has been developed to support the proposed subdivision to ensure that overland flows do not adversely affect any other land with common means of drainage.

• The subdivision pattern having regard to the physical characteristics of the land including existing vegetation.

The subdivision is responsive to the constraints and considerations posed by the site, including native vegetation and overland flows.

• The density of the proposed development.

The density of the proposed subdivision is appropriate for the locality and reflects the subdivision patterns seen on surrounding land.

• The area and dimensions of each lot in the subdivision.

The proposed subdivision has achieved lots with areas and dimensions consistent with those required by the Bunyip Township Strategy 2009.

- The layout of roads having regard to their function and relationship to existing roads.
- The movement of pedestrians and vehicles throughout the subdivision and the ease of access to all lots.

The proposed street layout is functional in design and integrates with the existing street network.

The movement of pedestrians and vehicles is facilitated through the north-south street through the centre of the subject site.

The provision and location of reserves for public open space and other community facilities.

The proposal does include a modest bushland reserve for public open space which is consistent with the Framework Plan contained in the Bunyip Township Strategy 2009.

• The staging of the subdivision.

The subdivision is proposed to be undertaken in three stages, which is appropriate for the size and scale of the subdivision and allows for the appropriate infrastructure to be implemented as the subdivision progresses through the stages. The staging has also been proposed as a mechanism that

facilitates the funding of the development as the sale of land identified as Stage 2 will fund the development of Stage 3 land.

The design and siting of buildings have regard to safety and the risk of spread of fire.

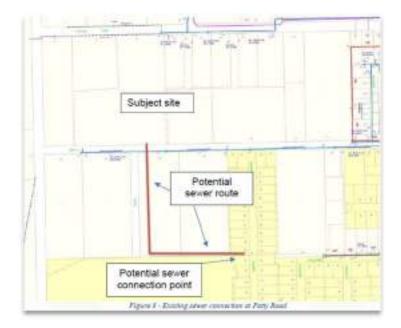
The risk of fire to the proposed subdivision is mitigated by the highly modified landscapes surrounding the subject site, and the isolated nature of the bushland reserve in the south western portion of the site. The site has been assessed as having a BAL ranging from 12.5 to 29. Please refer to the submitted BAL Heat Map, NLS 2025.

• The provision of off-street parking.

All lots are able to support off-street parking.

- The provision and location of common property.
- The functions of any body corporate.

No common property is proposed as part of this subdivision avoiding the necessity of a body corporate model.


- The availability and provision of utility services, including water, sewerage, drainage, electricity and gas.
- If the land is not sewered and no provision has been made for the land to be sewered, the capacity of the land to treat and retain all sewage and sullage within the boundaries of each lot.

The subject site is able to connect to all services. While there are no gravity sewer assets are located in the vicinity of the site, a possible option for connection and provision as discussed in the Engineering Servicing Report by *TaylorMiller/EngMil*, dated August 2025 suggests the construction of a gravity sewer main along the unmade road reserve to the south for approximately 220m and then east for approximately 180m along the southern boundary of No. 45 and 54 Petty road to an existing sewer manhole within a neighbouring subdivision (refer to figure 8, Page 10 of the *TaylorMiller/EngMil* report – extracted below) Similar developments in the vicinity employ small sewer pumping stations with pressure rising mains to service their developments however this method of sewer construction can often be expensive.

This copied document is made available for the purpose of the planning process.

as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

 Whether, in relation to subdivision plans, native vegetation can be protected through subdivision and siting of open space areas.

An Arboricultural Impact Assessment has been undertaken that has outlined where native vegetation is located and can be retained. All efforts have been made to retain as much vegetation as possible.

• The impact the development will have on the current and future development and operation of the transport system.

The proposed subdivision does not adversely impact on the current and future development and operation of the transport system. The proposed road network can accommodate buses should a route be proposed that employs the proposed road network.

CLAUSE 71.02-3 INTEGRATED DECISION MAKING

Clause 71.02-3 Integrated decision making seeks to balance the needs and expectations of the community in terms of the provision of built form to accommodate a growing population, protection of the environment, economic wellbeing, various social needs, management of resources and infrastructure.

Clause 71.02-3 has been recently updated (February, 2022) and aims to balance these needs and expectations through the employment of the Planning Scheme to ensure conflicting objectives are balanced in favour of net community benefit and sustainable development for the benefit of present and future generations. It states that in bushfire affected areas, planning must prioritise the protection of human life over all other policy considerations.

Our proposal contemplates the subdivision of land in an area identified as predominantly low risk (BAL 12.5) to the threat of bushfire. Despite the perceived elevated risk associated with the bushland reserve no. 1, we have shown that the reserve is an isolated patch of vegetation that is highly modified Woodland and is disconnected from bushland to the north; effectively mitigating 'fire run' potential and the likelihood of an intense fire impacting the proposed lots.

An integrated approach to bushfire planning can be exemplified through the strategic identification of suitable land for future development that is located with little hazardous vegetation, or low threat

vegetation within 150metres that significantly reduces the possibility of extreme bushfire behaviour occurring and neighbourhood-scale destruction highly unlikely, and where access and egress is available via multiple routes. This strategic location of settlement reduces the risk to the community and also to the vegetation and associated biodiversity that would be required to be removed or managed to mitigate hazard. An integrated approach to bushfire planning can be implemented at the neighbourhood scale to reduce the risk of hazard to the community, as per the example provided below (DELWP, 2020). This approach addresses the provision of developable lots and the location of different land uses, the provision of open space requirements for the community, and safe access and egress, and is exemplified by the graphic below.

The subdivision of the subject site provided an initial plan that aligned with the strategies above however, the preservation of high value onsite vegetation required a revision of plans that redirected the internal road to align with the eastern most boundary. Vegetation management within the proposed bushland reserve will remove understorey weeds and retard the connectivity of vegetation, effectively reducing the effective BAL for lots 213, 214 and 306. There are multiple access and egress options to and from the site, ensuring residents can leave the site should a bushfire occur, and access BAL Low areas. These mechanisms ensure there is a balance between the provision of lots for residential development as demanded by the community, the preservation and management of vegetation to reduce and mitigate environmental risks, and preserve the viable biodiversity assets associated with the bushland reserve, achieving the objectives of clause 71.02-3.

This copied document is made available for the purpose of the planning process as set out in the Planning one Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

10. CONCLUSION

It is submitted that the proposal is consistent with the relevant policies and provisions of the Cardinia Planning Scheme and should receive Council's support for the following reasons:

- The proposal is consistent with the Municipal Planning Strategy and the Planning Policy Framework.
- The proposal is consistent with the purpose of the General Residential Zone Schedule 1.
- As stated in this report, the matters for consideration under the Planning and Environment
 Act, 1987 and associated Planning and Environment Regulations 2015 has been satisfactorily
 addressed through compliance with the Cardinia Planning Scheme, demonstrating the
 subdivision is compatible with the existing subdivision and development pattern in the
 surrounding area.
- Onsite and third party vegetation has been assessed. Detailed assessments have been provided for each tree with high value vegetation preserved where possible and offset where unavoidable.
- The proposed lot sizes have dimensions appropriate for building envelopes that will provide
 for future dwellings that will not overshadow the existing rooftop solar energy systems on
 dwellings on adjoining residential lots.
- The proposal is respectful of the neighbourhood character and subdivision pattern evident in surrounding residential developments.
- The proposal has satisfied all relevant objectives and standards of Clause 56.
- The proposal effectively reduces and mitigates bushfire risk.
- The proposal provides effective temporary retardation of overland flows until such time as the Bunyip West DSS becomes available.
- The proposal provides a bushland reserve that preserves onsite vegetation and biodiversity, and provides public open space for future residents.
- The proposal provides for access and egress, pedestrianism, infrastructure consistent with the Bunyip Township Strategy, engineering standards and community expectations.

The proposal provides an excellent opportunity for further residential development in a well serviced location and in an area designated for residential growth in Bunyip.

The constraints and considerations of the subject site have been appropriately responded to in the design process, and the proposal integrates into the surrounding subdivision pattern and street network, and warrants Councils support.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

22 Business Park Drive Notting Hill, Victoria 3168

T 03 9538 5000 # 03 9638 5000

consulting@dpmvtc.com.au
 dpmvtc.com.au

AGN: 47 006 950 803 ACN: 006 550 803

8 Wattletree Road, Bunyip

Stormwater Management Strategy

Prepared by: DPM Consulting Group

For: Nobelius Land Surveyors

DPM REF: 3193/M/C

23rd of April 2025

Design Herelopment

Project Management

Civil Engineering

Urban Development

Storw Matter Management

Construction Management

Disclaimer:

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any ©Dennis, Price, Miller Pty. Ltd. assemnation, distribution or copying of this document is strictly promoted

The information provided in this report should be considered as "Preliminary" and used for planning purposes. The information is subject to variation following further advice and confirmation from respective authorities. It should be noted that the information contained in this report is derived from generally reliable sources; however, it is subject to variation after detailed planning, survey, design and formal liaison with the relevant authorities. It should also be noted that the development of other properties in the surrounding area may also have an impact on the development of the property.

This report has been produced by the office of DPM Consulting Group:-

22 Business Park Drive **NOTTING HILL VIC 3168**

t (03) 9538 5000 f (03) 9538 5050

E-mail: consulting@dpmvic.com.au

Web: www.dpmvic.com.au

ABN 47 006 550 803 ACN 006 550 803

Document Issue Register:

Issue Date	Revision No.	Authors	Checked	Approved
29.03.2023	1.0	C. Akalanka	D. Moret	T. Davoli
17.08.2023	2.0	C. Akalanka	D. Moret	T. Davoli
12.01.2023	3.0	C. Akalanka	D. Moret	T. Davoli
28.03.2024	4.0	S. Khaji	D. Moret	T. Davoli
09.08.2024	5.0	S. Khaji	D. Moret	L. Papazois
10.09.2024	6.0	S. Khaji	D. Moret	L. Papazois
23.04.2025	7.0	S. Khaji	D. Moret	L. Papazois

Reference Plans/Documents:

Date	Plan Reference	
12.12.2022	Survey Plan (20857) - Nobelius Land Surveyors	
16.07.2024	Development Plan Version 6 – Nobelius Land Surveyors	

COPYRIGHT: The ideas and material contained in this document are the property of DPM Consulting Group (Dennis Price & Miller Pty Ltd - ABN 47 006 550 803). Use or copying this document in whole or in part without written permission of DPM Consulting Group constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of DPM Consulting Group's client and is subject to and issued in connection with the provisions of the agreement between DPM Consulting Group and its client. DPM Consulting Group accepts no liability or responsibility whatsoever for or in respect of any use or reliance upon this report by any third party.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge. and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

Contents

i.	Figures	4
ii.	Tables	4
1.0	Introduction	5
1.1	1 Background	5
1.2	2 Objectives	5
1.3	3 Stormwater Management Strategy	6
	Conveyance Systems	6
	Volume Management	6
1.4	4 Integrated Water Management	7
2.0	Property Description	9
2.1	1 Property location	9
2.2	2 Site Description	10
2.3	3 Existing Topography	12
2.4	4 Existing Constraints	13
3.0	Drainage Strategy	15
3.1	1 Background	15
3.2	2 Context to the Bunyip West DSS	15
3.3	3 Works proposed as part of 8, Wattletree Road, Bunyip Development	16
3.4	4 Hydrological Modelling	18
Int	troduction	18
De	esign Flows	18
Flo	ow Conveyance	19
Flo	ow Attenuation	19
4.0	Integrated Water Management	24
4.1	1 Introduction	24
4.2	2 Stormwater treatment	24
5.0	Overland Flow Passage	27
6.0	Conclusion	29
Bibli	ography	31
Appe	endix A - Existing Site Survey	32
Appe	endix B – Development Concept Layout Plan	33
Appe	endix C – Pre-development Advice from Melbourne Water	34
Appe	endix D – Catchment Plans	35
Appe	endix E – Drainage Computation	36
Appe	endix F – Overland Flow	37

Appendix G – MW Correspondences	38
i. Figures	
Figure 1 – Drivers for Council's IWMP	
Figure 2 – Locality plan of the proposed development (Nearmap, 2022)	9
Figure 3 – Development context plan	11
Figure 4 – Three-dimension view of the topography of the site and surrounding	12
Figure 5 – Existing site topography (DPM, 2022)	12
Figure 6 – Existing dam located along the south boundary of the proposed development site	13
Figure 7 – Predevelopment catchment plan	14
Figure 8 – Legal Point of Discharge (LPOD)	14
Figure 9 – Extract of the Bunyip West DSS (Melbourne Water, 2017)	15
Figure 10 – Post-developed catchment plan	16
Figure 11 – Inflow hydrographs for different storm durations	
Figure 12 – Drainage alignment in the interim condition showing the concept design of the temporary re	
basin	-
Figure 13 – Drainage alignment in the ultimate condition	22
Figure 14 – Music model proposed for the development	
Figure 15: MUSIC result for TSS daily concentration	
Figure 16 – Overland flow path of the proposed development	
ii. Tables	
Table 1 Site Summary	10
Table 2 Peak flows at the outfall of the proposed development	
Table 3 Summary of the results: storage required for different storm events	
Table 4 Summary of the MUSIC results	
This copied document is made available for the purpose of the planning process as set out in the Planning one Environment Act 1947. The information must not be	20
speed for any other research. By Jakons a constatilities also proved your acknowledge.	

used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

1.0 Introduction

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you acknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

1.1 Background

1.1.1. DPM Consulting Group (DPM) have been engaged by Nobelius Land Surveyors (the client) to prepare a Stormwater Management Strategy (SWMS) for the proposed development located at 8, Wattletree Road, Bunyip.

1.2 Objectives

- 1.2.1. The purpose of this document is to set out a high-level stormwater management strategy for the subject development site, which will entail:
 - Delineating the site's internal and external drainage catchments.
 - Identifying the flood mitigation measures that need to be put in place;
 - Recognising the key drainage infrastructure required to help meet these objectives.
- 1.2.2. The Stormwater Management Strategy will investigate the viability of stormwater quality treatment to Best Practice Environmental Management (BPEM) objectives.
- 1.2.3. Additionally, this report aims to develop a strategy to identify, prioritise and investigate Integrated Water Management (IWM) opportunities in accordance with the Integrated Water Management Framework for Victoria and the Integrated Water Management Plan (2014) prepared by Cardinia Shire Council.
- 1.2.4. The objectives of this document are as follows:
 - Providing a stormwater strategy for the peak flows generated by a 20% Annual Exceedance Probability (AEP) event and a 1% AEP event;
 - Promoting the safe conveyance of the peak flows downstream to the future drainage scheme assets as per Bunyip West Development Services Scheme (DSS)
 - Considering the delivery of a Temporary Retarding Basin (TRB) for the attenuation of the postdeveloped flows to pre-developed conditions;
 - Identifying and leveraging opportunities to optimise the outcomes of the water cycle;
 - Pursue new approaches which contribute to conserve water resources as well as protecting the environment.

1.3 Stormwater Management Strategy

- 1.3.1. DPM have prepared a SWMS for the proposed residential development based on the latest approach to urban stormwater management.
- 1.3.2. This is based on retention and conveyance of stormwater runoff to meet multi-purpose design objectives, that enhance liveability of urban areas, mitigate flood nuisance and avoid damage to property and loss of life.
- 1.3.3. This SWMS incorporates two classes of stormwater management infrastructure in accordance with the latest Australian Rainfall & Runoff 2019 (ARR19): conveyance systems and volume management.

Conveyance Systems

- 1.3.4. Conveyance systems allow runoff to be conveyed through urban areas and provide connections through the catchment.
- 1.3.5. This SWMS also incorporates the traditional approach to stormwater management which involves a minor and major event management philosophy.
- 1.3.6. Minor flows up to the 20% Annual Exceedance Probability (AEP) will be conveyed in an underground pipe network to their ultimate discharge point.
- 1.3.7. Major flows up to the 1% AEP, meeting specific safety requirements, can flow in an overland flow path, along road reserves and constructed waterways and to their ultimate discharge point. Both the Minor and Major drainage strategies for the site have been discussed in this SWMS.

Volume Management

- 1.3.8. Volume management includes measures and solutions which can store runoff for a period of time, promote infiltration and potentially stored harvested stormwater for beneficial uses.
- 1.3.9. Volume management is a key element of stormwater management and flood control which has a fundamental importance in achieving a range of hydrological and water quality objectives within these facilities.
- 1.3.10. Additionally, DPM's SWMS aims to achieve the water quality targets in accordance with the Best Practice Environmental Management Guidelines (BPEMG) which requires the treatment of stormwater runoff to achieve 80% reduction in Total Suspended Solids (TSS), 45% reduction in Total Phosphorous (TP) and 45% reduction in Total Nitrogen (TN).
- 1.3.11. As part of the Victoria Planning Provision Clause 56.07, developers are required to minimise stormwater quality and quantity related impacts. Typically, these pollutant targets are achieved through the implementation of WSUD practices, such as wetlands and bio-retention systems.

1.3.12. DPM also intends for these stormwater management assets to be multi-functional, whereby rather than just serving as a treatment mechanism for stormwater, their presence will provide public amenity, an opportunity for communities to engage with their environment and beautification of the site's existing natural features.

1.4 Integrated Water Management

- 1.4.1. Urban stormwater runoff and associated stormwater responses are part of the urban water cycle, which includes not only stormwater quality and quantity, but also water supply, sewerage, urban form and waterway.
- 1.4.2. Urban runoff design and investigation techniques can be used to achieve better economic, social and environmental outcomes.
- 1.4.3. Urban runoff management is successfully achieved when it is integrated with the complete management of the urban cycle.
- 1.4.4. In accordance with the Integrated Water Management Plan prepared by Cardinia Shire Council, DPM aim to realise integrated opportunities through collaboration and communication with relevant stakeholders in order to identify, coordinate and priorities areas that would most benefit from IWM applications.

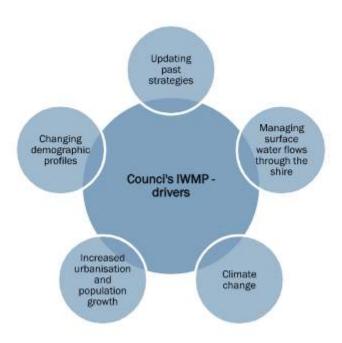


Figure 1 - Drivers for Council's IWMP

1.4.5. DPM understand the importance of creating greater value to the community by focusing on improving and enhancing the water cycle planning and management within the Cardinia Shire Council.

This copied document is made available for the purpose of the planning process as set out in the Planning one Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

- 1.4.6. DPM continuously thrive to seek opportunities and foster innovation to provide efficient and successful economic and liveability outcomes, pursuing new approaches which would contribute to conserve water resources as well as protecting the environment.
- 1.4.7. It is understood that the overall objective of IWMP published by the Cardinia Shire Council is to deliver a framework that will guide Council towards a more sustainable integrated approach to water management to reduce reliance on potable water and enhance ecological health of receiving waterways (Westernport Bay).
- 1.4.8. In addition, to achieve the overall aim of the council's IWMP the six main IWMP's objectives with respect to Stormwater, Potable Water, Alternative Water Sources, Groundwater, Wastewater and Waterways was understood.
- 1.4.9. This SWMS will aim to address the Cardinia Shire City Council's IWMP's main objectives with regards to Stormwater and Waterways

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

2.0

Property Description as set out in the Planning and Engrenment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

- 2.1 **Property location**
- 2.1.1. The proposed development site is located at 8 Wattletree Road, Bunyip VIC approximately 90 km Southeast of Melbourne's CBD.
- 2.1.2. The site consists of undeveloped Greenfield land and a total area of approximately 4.09 ha (see Figure 2).

Figure 2 - Locality plan of the proposed development (Nearmap, 2022)

- 2.1.3. The site's current and past uses are largely pastoral with no history of contamination.
- 2.1.4. The site has been categorized as a General Residential Zone by Victorian Planning Authority.
- 2.1.5. The site is within the municipality of Cardinia Shire Council.

2.2 Site Description

2.2.1. Table 1 below summarises the general site characteristics.

Table 1 Site Summary

Gross Area		The total site area is 4.09 ha approximately		
Existing Lots		The existing site is greenfield		
Topography		The site has a slope of approximately 1 in 12 across land from the northern boundary of the site to the Southern boundary of the site. The highest elevation of the site is found to be at 72m at the Northern boundary and the lowest elevation of 54m at the Southern boundary.		
Boundaries	North	Wattletree Road		
	East	Existing Residential land/ Undeveloped greenfield		
	West	Undeveloped Greenfield		
	South	Petty Road		
Access		Wattletree Road/ Petty Road		

- 2.2.2. The project consists of a staged subdivision, and it includes the delivery of the entire associated infrastructure.
- 2.2.3. Access to the site is permanently provided from Wattletree Road from the North and from Petty Road from the south of the site. (Refer Figure 3 and Appendix B – Development Concept Layout Plan).
- 2.2.4. It is understood that the proposed concept layout plan can make the conveyance of the flow challenging. However, it should be noted that the proposed layout for the internal road within the development is based on the discussion with the Council to protect the maintain trees with significant values along the western lots of the proposed development.
- 2.2.5. DPM have proposed the strategy to convey the flows from the proposed development safely which is discussed in Section 3.5.19 and Section 5.1.1.

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

Figure 3 – Development context plan

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of the document is strictly promoted

2.3 Existing Topography

2.3.1. The site generally features good fall gravitating North to South direction (Refer Figure 4 and Figure 5).

Figure 4 – Three-dimension view of the topography of the site and surrounding

Figure 5 – Existing site topography (DPM, 2022)

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By taking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

- 2.3.2. The existing land is undeveloped Greenfield and there is little sign of any significant earthworks, mounds or deposited fill.
- 2.3.3. Additionally, there is an existing dam towards to south of the site.
- 2.3.4. The site covers a heavy vegetation area of approximately 1.28 ha. However, this area is remained to be untouched during the development.
 - 2.4 **Existing Constraints**

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

2.4.1. There is an existing dam with approximately 1460m³ of <u>available</u> storage located within the southern part of the site (Figure 6).

Figure 6 - Existing dam located along the south boundary of the proposed development site.

2.4.2. According to the existing site topography, the stormwater generated from the site is draining to the open drain located along Petty Road.

Figure 7 - Predevelopment catchment plan

- 2.4.3. Correspondingly, stormwater generated by sub catchments 1 and 2 (depicted by green and purple colours) is conveying to the open drain located along Petty Road. Stormwater originated by sub catchment 2 (illustrated by orange colour) is conveying to the existing dam located within the site and an attenuated flow is conveying out to the existing open drain along Petty Road.
- 2.4.4. Additionally, the open drain located south to the site, along Petty Road has been identified as the Legal Point of Discharge (LPOD) for the proposed development.

Figure 8 – Legal Point of Discharge (LPOD)

3.0

This copied document is made available for the purpose of the planning process. Drainage Strategy as set out in the Planning one Environment Act 1947. The intermation must not be used for any other purpose. By laking a copy of this document you arknowledge. and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

3.1 Background

- 3.1.1. The proposed development falls under the municipality of Cardinia Shire Council and Melbourne Water Catchment Management Authority. It is understood that the Drainage Scheme is currently active.
- 3.1.2. DPM have received pre-development advice from Melbourne Water dated 13 August 2023 which is included in Appendix C.

3.2 Context to the Bunyip West DSS

3.2.1. The proposed development forms part of the broader Bunyip West DSS, administered by Melbourne Water (see Figure 9).

Figure 9 – Extract of the Bunyip West DSS (Melbourne Water, 2017)

- 3.2.2. As mentioned in the Pre-development Advice from MW, the current base rate hydraulic contribution of \$121,407/ha and base rate of 18,876/ha water quality reduction for onsite treatment for a total of \$140,283/ha for the proposed residential development.
- 3.2.3. According to the Pre-development Advice, the permit area ultimately relies on delivery of the following drainage scheme assets:

- **D1 A8:** Drainage scheme pipeline to service 20% AEP flows developed by the upstream catchment and conveyed through the proposed development
- A6 A10A: Drainage scheme pipeline for conveying the post developed flows from the proposed development to downstream.
- C3 A8: Drainage scheme pipeline to service 20% AEP flows developed by the upstream catchment and conveyed through the proposed development
- A10 A A18: Constructed waterway
- WL1/RB1: Retarding basin and water quality asset which has the function of attenuating the peak flows from the upstream catchment to pre-developed conditions and achieve BPEMG.
- 3.3 Works proposed as part of 8, Wattletree Road, Bunyip Development
- 3.3.1. The development will be proposed to be delivered in accordance with Appendix B Development Concept Layout Plan
- 3.3.2. A post-developed catchment plan has been created considering the site topography.

Figure 10 - Post-developed catchment plan

3.3.3. Further, the existing dam is proposed to be utilized to achieve the desired flood attenuation requirement under the temporary strategy as outlined within section 3.5.1.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

- 3.3.4. Accordingly, a temporary strategy has been considered for the development whereby the site will convey the post-developed flows to a temporary retarding asset (dam) located to the south of the development and the attenuated flows will be conveyed to the existing open drain located to southeast corner of the site.
- 3.3.5. Correspondingly, DPM propose to convey the post developed flows generated by sub catchment 1 (SUB -01) to be conveyed directly into the existing open drain along Petty Road, following the existing conditions.
- 3.3.6. This is deemed reasonable as no development is expected to be delivered within the heavy vegetation area.
- 3.3.7. The post developed flows generated from (SUB-02) will be conveyed into the existing open drain along Petty Road Petty Road.
- 3.3.8. On the other hand, the post developed flows generated by the remaining part of the development (SUB-03 and 04) will be conveyed to the existing dam for attenuation and the attenuated flows will be conveyed to the existing open drain located along Petty Road.
- 3.3.9. It is noted that the existing dam will be subject to remediation works and further investigations might be required to confirm the suitability of the dam to cater for the developed flows.
- 3.3.10. As discussed during the meeting with MW on the 20.03.2024, if further information and investigation on the dam will be required, those will be included as a condition to the planning permit.
- 3.3.11. The TRB will be decommissioned once the future drainage infrastructure downstream of the site (i.e. RB1/WL1) will be delivered.
- 3.3.12. DPM acknowledge that no water quality treatment asset has to be delivered with the proposed development. However, the TRB will be providing temporary sediment control, reducing the pollution load downstream of the site.
- 3.3.13. Additionally, as part of the proposed development and in accordance with the DSS, the following drainage scheme assets are expected to be constructed:
 - C3 A7: 93 m council pipe to cater for 20% AEP flow
 - A6 A7: 110 m council pipe to cater for 20% AEP flow
 - A7 A8: 55 m council pipe to cater for 20% AEP flow
 - **D1 D2:** 125 m council pipe to cater for 20% AEP flow
 - **D2 A8:** 83 m council pipe to cater for 20% AEP flow
- 3.3.14. It is noted that MW preference for D1 D2 drainage scheme pipe is to be constructed at the gravel section of Petty Road to align with the DSS and to avoid any impacts on vegetation within the proposed bushland reserve and the Petty Road reserve.

- 3.3.15. The correspondence with the MW regarding the preferred location of **D1 D2** pipe is included in Appendix G.
- 3.3.16. Further details of the TRB will be discussed with Council at appropriate phases of the design.

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be Hydrological Modelling used for any other purpose. By taking a copy of this document you arknowledge 3.4 and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

Introduction

- 3.4.1. As stated in section 1.3.6, the minor drainage system of the proposed development must be sized for the developed 20% AEP flows.
- 3.4.2. The major drainage system must be designed to convey the maximum developed 1% AEP flow.
- 3.4.3. The critical 1% AEP event that produces the maximum peak flow must be defined against the proposed road reserve geometry to confirm that the Melbourne Water floodway safety criteria are fulfilled.

Design Flows

- 3.4.4. In accordance with the Australian Rainfall and Runoff 2019 (AR&R19), the calculation of the peak flows for catchments reasonably small (area smaller than 10 ha) can be undertaken with the use of the rational method.
- 3.4.5. No external catchments have been considered in the calculation of the peak flows.
- 3.4.6. The time of concentration has been calculated by using an average of a range of methods for flow length estimate, Bransby Williams and Pillgrim & McDermott.
- 3.4.7. The flow length estimate uses a constant velocity of 2.5 m/s to calculate the time of concentration for a 20% AEP event.
- 3.4.8. The flow length estimate uses a constant velocity of 1.5 m/s to calculate the time of concentration for a 1% AEP
- 3.4.9. The pre- and post-development flow originated by the proposed development site have been included in Table

Table 2 Peak flows at the outfall of the proposed development

Flow Type:	Symbol	Storm Duration	Peak Flow Rate [m³/s]
Pre-developed Maximum Flow	1% AEP	12 minutes	0.311
Developed Major Flow	1% AEP	11 minutes	0.839
Developed Minor Flow	20% AEP	8 minutes	0.404

3.4.10. The flows in Table 2 have been calculated in line with the Cardinia Shire Council Planning Scheme and using the Rational Method, considered appropriate for a small catchment, as noted at 3.4.4

- 3.4.11. It is expected that upstream developments will be responsible for the delivery of TRB, within their sites, until the future drainage infrastructure for the Bunyip West DSS is delivered.
- 3.4.12. Further details of the flow calculation are attached in Appendix E Drainage Computation.
- 3.4.13. Note that the Developed Minor Flow (20% AEP) serves as an indication only based on an overall estimate and must be revisited during the detailed design phase of the proposed development.
- 3.4.14. As mentioned within section 3.3.8, the peak flow generated from sub catchments 3 and 4 will be conveyed downstream to the TRB located within the existing dam along the south boundary of the site and the attenuated peak flow will be conveyed to the existing open drain along Petty road.

Flow Conveyance

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

- 3.4.15. The minor drainage system of the proposed development must be sized for the peak 20% AEP event flow (20% AEP)
- 3.4.16. The access to the site and the other areas must be designed to avoid excessive pooling of water and to convey these flows into the minor system.
- 3.4.17. The major drainage system must be sized for the peak 1% AEP event flow (1% AEP) and may utilise the road surface to convey flows above the capacity of the minor drainage system to the legal point of discharge (LPOD), provided that freeboard and Melbourne Water flow safety limits are adhered to.
- 3.4.18. The 1% AEP event flow will be conveyed via road network to the TRB located to the south-west corner of the site.
- 3.4.19. A temporary flood attenuation strategy has been outlined within the next section which shows how the attenuation of the peak flows will be delivered within the proposed development.
- 3.4.20. Section 3.2.3 outlined the list of the drainage scheme assets that the permit area ultimately relies on under ultimate condition.
- 3.4.21. However, as discussed in the meeting between MW, the client, and DPM on 20 March 2024 and due to the proposed temporary attenuation asset within the development, DPM propose that the developer will be responsible for the delivery and construction of the drainage scheme assets as outlined in Section 3.3.13.

Flow Attenuation

3.5.1. Due to the relatively small and uniform catchment, as previously stated, the Rational Method is considered an acceptable flow calculation method for both predeveloped flows and developed flows.

- 3.5.2. A plan of the overall catchment contributing post developed flows has been included in Appendix D Catchment Plan.
- 3.5.3. Boyd's Method (Boyd et al. 1994) and the modified rational method have been used to estimate the required storage for attenuation purposes at the downstream end of the site.
- 3.5.4. Boyd's method estimates the storage using the rational method calculated peak flow rate.
- 3.5.5. The modified rational method uses longer duration storms that produce smaller flow rates to verify that the storage capacity of the retarding basin is not exceeded (see Figure 11).

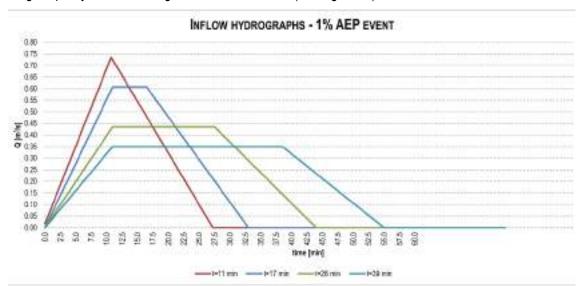


Figure 11 - Inflow hydrographs for different storm durations

3.5.6. Table 3 outlines the storage volume required based on the different durations of the storm event.

Table 3 Summary of the results: storage required for different storm events

Storm Duration [min]	1% AEP [m³/s]	Storage required [m³]
11 minutes	0.744	371
17 minutes	0.615	419
28 minutes	0.441	413
39 minutes	0.355	395

- 3.5.7. The critical AEP 1% storm that maximises the volume of the detention system is the 17-minute duration storm that produces a peak flow of 0.607 m³/s and requires an attenuation storage of approximately 419 m³.
- 3.5.8. The provision of approximately 419 m³ of storage will be required for the temporary attenuation of the post-developed flows to pre-developed condition until the ultimate drainage infrastructure to the southwest of the site is delivered.
- 3.5.9. As mentioned in Section 3.3.7, the post-development flows from SUB-02 will not be directed into the TRB. Instead, DPM has designed the TRB to over-attenuate the flows from other catchments, allowing the flows from SUB-02 to leave the site without attenuation. As a result, the combined unattenuated flows from SUB-02 and the attenuated flows from the rest of the site are lower than the pre-development flows from the entire site.

- 3.5.10. Accordingly, it is proposed that the existing dam along the south boundary of the site to be utilised for the temporary attenuation of the post-developed flows to pre-developed condition until the ultimate drainage infrastructure is delivered.
- 3.5.11. As discussed in Section 2.4.1, the existing dam has an approximately 1460m³ of available storage. Therefore, the required attenuation (TRB) can be provided within the existing dam.
- 3.5.12. It is understood that a dam assessment might need to be undertaken and submitted to Melbourne Water. However, as confirmed by MW during the meeting on the 20.03.2024, this will be included as a condition to the planning permit, should be deemed necessary.
- 3.5.13. A concept design of the temporary asset is shown in Figure 12. The following figure only illustrates a concept design for the TRB in the interim condition. Nevertheless, a detailed design has to be carried out at the design phase of the project.

Figure 12 - Drainage alignment in the interim condition showing the concept design of the temporary retarding basin

3.5.14. The ultimate drainage alignment for the proposed development is shown in Figure 13.

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

Figure 13 – Drainage alignment in the ultimate condition

- 3.5.15. DPM propose to develop 28 lots out of total 30 as the stage 1 of the development until the ultimate infrastructure is delivered and the TRB can be decommissioned, leading to the full completion and delivery of the development.
- 3.5.16. Additionally, DN 525 pipe is proposed to be laid with a grade of 1 in 182 to service the attenuated flows from the proposed development to the existing open drain located along Petty Road.
- 3.5.17. Refer Figure 12 for the drainage assets proposed to be delivered within the stage 1 of the development.
- 3.5.18. The following strategy has been driven by the amended layout that has been requested by Council in order to protect the maintain trees with significant values along the western lots as mentioned in 2.2.4.
- 3.5.19. DPM have proposed a drainage pit and a lateral easement at the common boundary of Lots 212 and 214 (as shown in Figure 12) to convey the 1% AEP flow from upstream to the TRB.
- 3.5.20. It should be noted that after the decommission of the TRB in the ultimate post-developed condition, the proposed easement will be extended and eventually will be connected to the proposed bubble up pit before connecting to the drainage scheme 20% AEP pipe as shown in Figure 13.
- 3.5.21. The bubble up pit will leave the gap flow within the Petty Road.

- 3.5.22. It is noted that the size of the TRB can be reduced with the provision of Rainwater tanks and upsizing the underground pipe network.
- 3.5.23. For instance, assuming a 28-dwelling development, each provided with a 2kL Rainwater tank, using a 50% of the tank capacity would reduce the required storage volume of the TRB approximately 345 m³. Additionally, a further reduction of the required capacity of the TRB can be achieved by upsizing the underground pipe network.
- 3.5.24. In relation to the delivery of the ultimate infrastructure servicing the overall Bunyip DSS, DPM understand that the landowners of 735 Railway Avenue and Bunyip Meadow Estate have expressed the possibility to deliver the ultimate drainage infrastructure for the DSS.
- 3.5.25. This would facilitate further developments within the area. DPM and the client welcome any further discussion which may help MW in the delivery of the required infrastructure.
- 3.5.26. As mentioned in Section 3.3.14, and in accordance with MW request the drainage scheme pipe (D1 D2) will be constructed south to within the gravel section of Petty Road to protect the vegetation in the proposed bushland reserve and the Petty Road reserve.
- 3.5.27. Figure 12 and Figure 13 show the updated location for **D1 D2** drainage scheme pipe.

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

Integrated Water Management 4.0

4.1 Introduction

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of the document is strictly promoted

- 4.1.1 DPM have investigated the possibility to deliver innovative solutions within the proposed development to contribute and align with the objectives of Cardinia Shire City Council's 2018-2028 Integrated Water Management Plan.
- 4.1.2 For a development of this size, identifying opportunities that target for fit-for-purpose water usage, cooler greener microclimates and improved water quality for cleaner and healthy waterways would be well suited. The Developer is open to exploring opportunities that help achieve this with Council.
- 4.1.3 As mentioned within section 1.3.11, as part of the Victoria Planning Provision Clause 56.07, developers are required to achieve the water quality stormwater quality targets of
 - 80% Total Suspended Solids (TSS) load reduction
 - 45% Total Phosphorous (TP) load reduction
 - 45% Total Nitrogen (TN) load reduction
 - 75% Gross Pollutants (AKA Litter) reduction
- 4.1.4 Further discussion with Council and the Melbourne Water will need to be entertained to understand the feasibility of the integrated water management solutions proposed and the advantageous impact on the future drainage scheme assets downstream.

4.2 Stormwater treatment

4.2.1. DPM have prepared a MUSIC model of the proposed development to evaluate the treatment train effectiveness of the temporary retarding basin (see Figure 14).

Figure 14 - Music model proposed for the development

- 4.2.2. As discussed in Section 3.3.7, the post-developed flows generated from (SUB-02) will not drain to the temporary retarding basin.
- 4.2.3. The provision of the temporary retarding basin achieves the following results:

Table 4 Summary of the MUSIC results

	Proposed Development	BPEMG
TSS reduction [%]	84.9	80%
TP reduction [%]	59.8	45%
TN reduction [%]	21.6	45%

- 4.2.4. The results outlined in the above Table 4 highlight that the proposed temporary retarding basin is able to offer satisfying treatment train effectiveness, even though the Water Sensitive Urban Design (WSUD) solution does not achieve Best Practice.
- 4.2.5. The reductions of Total Suspended Solid, Total Phosphorous are above the threshold, while the reduction of Total Nitrogen is below the threshold, according to the reductions required by the Victoria Planning Provision Clause 56.07.
- 4.2.6. However, as previously stated, in accordance with the Bunyip west DSS, no water quality treatment is expected to be provided for this site.

This copied document is made available for the purpose of the planning process as set but in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

4.2.7. As discussed, the proposed TRB does not achieve the best practice for total Nitrogen. However, it does achieve the State Environment Protection Policy (SEPP) requirements. The Policy requires the treatment effectiveness results for TSS to not to exceed the 90th percentile of 80 mg/l. Figure 15 shows the MUSIC result for TSS daily concentration.

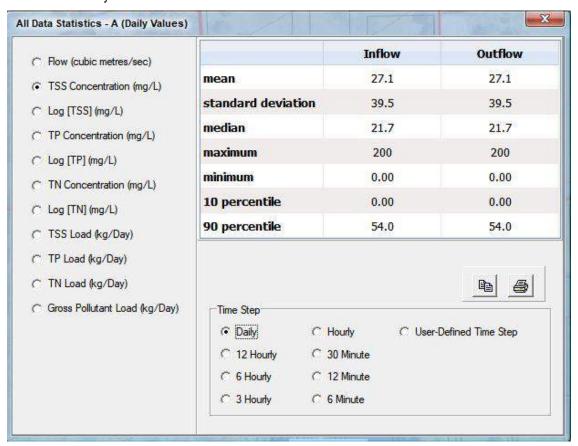


Figure 15: MUSIC result for TSS daily concentration

4.2.8. As shown in Figure 15 the 90 percentiles of TSS daily concentration for the TRB is 54 mg/l and does not This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be exceed 80mg/l. used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be Overland Flow Passage used for any other purpose. By taking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any 5.0 dissemination, distribution or copying of this document is strictly promoted

- 5.1.1 As discussed in Section 2.2.4 the proposed internal road layout is based on the discussion with the Council in order to protect the ecosystem of the existing tree reserve located west of the subject site.
- 5.1.2 Figure 16 shows the main overland flow paths within the proposed development.

Figure 16 - Overland flow path of the proposed development

- 5.1.3 As highlighted in Figure 16, the overland flow originated from the proposed development (excluding the 6 Lots located at southeast of the subject site) is conveyed to the temporary retarding storage via a proposed stormwater pit and a lateral easement and for the attenuation of the peak flows to pre-developed conditions.
- 5.1.4 The overland flow generated from the 6 Lots at southeast of the subject site (SUB-02 in Figure 10) will be conveyed to the existing open drain along Petty Road.
- 5.1.5 The final outfall of the proposed development is represented by the open drain to the south of the site.
- 5.1.6 Figure 16 shows the main critical section for which the overland flow capacity verification has been undertaken.
- 5.1.7 Further investigation will need to be undertaken during detail design to confirm the overland flow paths to achieve the Melbourne Water floodway safety criteria.

- 5.1.8 Figure 16 highlights the flow from the catchment contributing to the overland flow at Section A.
- 5.1.9 As shown in Appendix F – Overland Flow, the Melbourne Water's Floodway Safety Criteria are met.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of the document is strictly promoted.

6.0 Conclusion

- 6.1.1 DPM Consulting Group have completed a Stormwater Management Strategy for the proposed development at 8 Wattletree Road, Bunyip, and have confirmed via assessment of the site's topography and subdivisional layout that the proposed development can achieve the key objectives required by the Cardinia Shire Council and Melbourne Water.
- 6.1.2 The report has identified the Legal Point of Discharge to be the drainage scheme pipe as per DSS.
- 6.1.3 Attenuation of the post-developed peak flows (0.615m³/s- which maximises the size of the required storage) to pre-developed conditions is proposed to be achieved by delivering a Temporary Retarding Basin (TRB) with a capacity of 419 m3.
- 6.1.4 Stormwater Quality modelling using MUSIC has demonstrated that the temporary retarding basin partially meets the BPEMG of Victoria Planning Provision Clause 56.07. No water quality treatment is expected within the proposed development in consideration of the delivery of the future drainage scheme asset WL/RB1, in accordance with the Bunyip west DSS.
- 6.1.5 It is proposed that the developer will construct the following drainage scheme pipes which are within the This copied document is made available for the purpose of the planning process. subject site: as set out in the Planning one Environment Act 1947. The information must not be
 - used for any other purpose. By laking a copy of this document you acknowledge C3 = A7 and agree that you will only use the document for the purpose specified above and that any A6 – A7

 - A7 A8
 - D1 D2
 - D2 A8
- 6.1.6 In accordance with MW request, the D1- D2 drainage scheme pipe will be constructed along the gravel section of Petty Road to avoid impacting the protected vegetation within the reserves.
- 6.1.7 Critical locations for overland flow passage have been identified and it has been confirmed via hydraulic computations that Melbourne Water's floodway safety criteria are achieved.
- 6.1.8 The Development proponent aims to achieve the objectives with respect to the Stormwater and constructed Waterways (Objectives 1) of Cardinia Shire City Council's IWMP.

All further enquiries can be made directly to:-

This copied document is made available for the purpose of the planning process as set but in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

Bibliography

Babister, M., Trim, A., Testoni, I. & Retallick, M. 2016. The Australian Rainfall & Runoff Datahub, 37th Hydrology and Water Resources Symposium Queenstown NZ

Cardinia Shire City Council, Integrated Water Management Plan - 2014

The State of Victoria Department of Environment, Land, Water and Planning 2017 Integrated Water Management

Framework for Victoria

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

Appendix A - Existing Site Survey

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you acknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

FEATURE & LEVEL PLAN

DENOTES FIRST FLOOR BUILDING LINE

8 Wattletree Road **BUNYIP**

SCALE 1:1500 (A3)

LEGEND

- GRATE

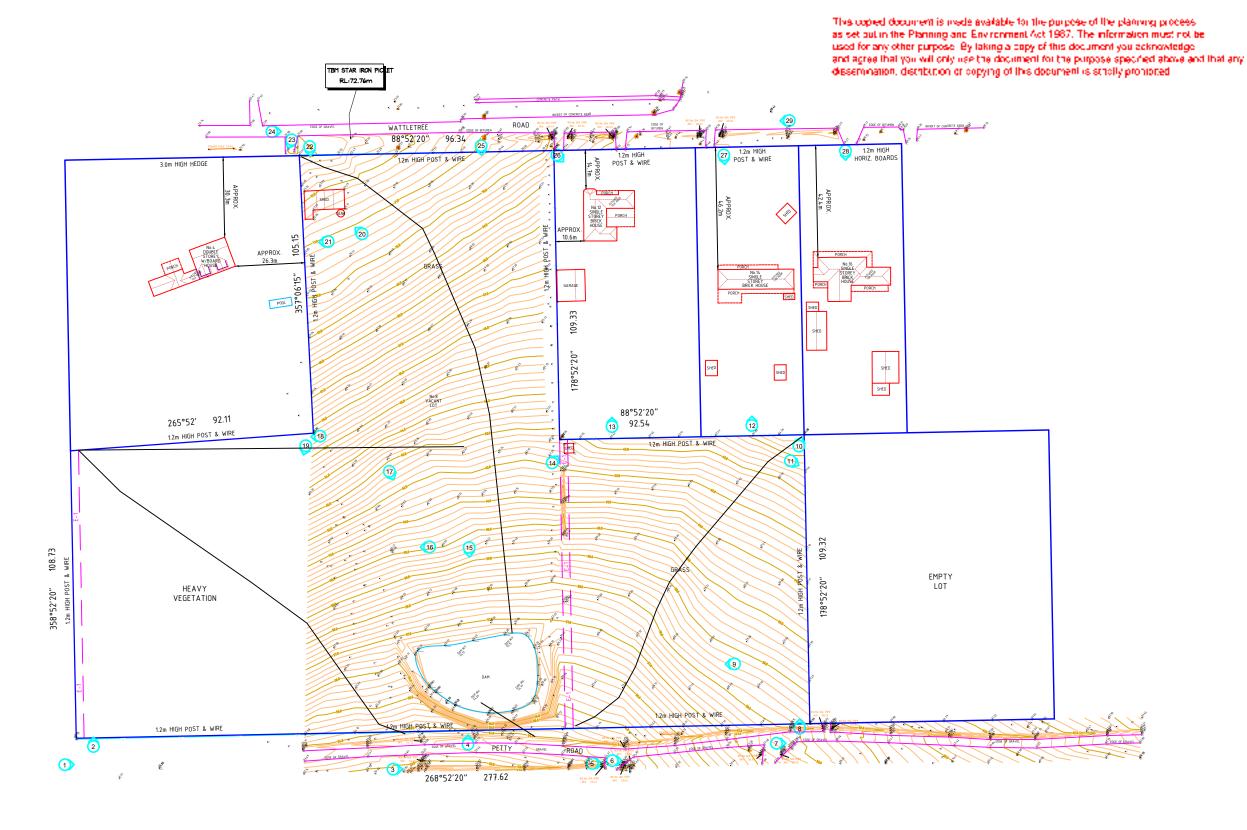
- VALVE

- PIT

- TELSTRA PIT

- SIGN

- HYDRANT



- DRAINAGE PIT

ELECTRICITY - ELEC. PIT

- PHOTO POSITION & DIRECTION

NOBELIUS LAND SURVEYORS

P.O. BOX 461 PAKENHAM 3810 Ph 03 5941 4112 Fax 03 5941 7359 mail@nobelius.com.au

NOTE:

- THIS PLAN IS TO BE READ IN CONJUNCTION WITH THE 'RECORD OF HAVING RE-ESTABLISHED A PARCEL'. INFORMATION REGARDING TITLE BOUNDARIES AND/OR EASEMENTS SHOULD BE TAKEN FROM RE-ESTABLISHMENT PLAN.

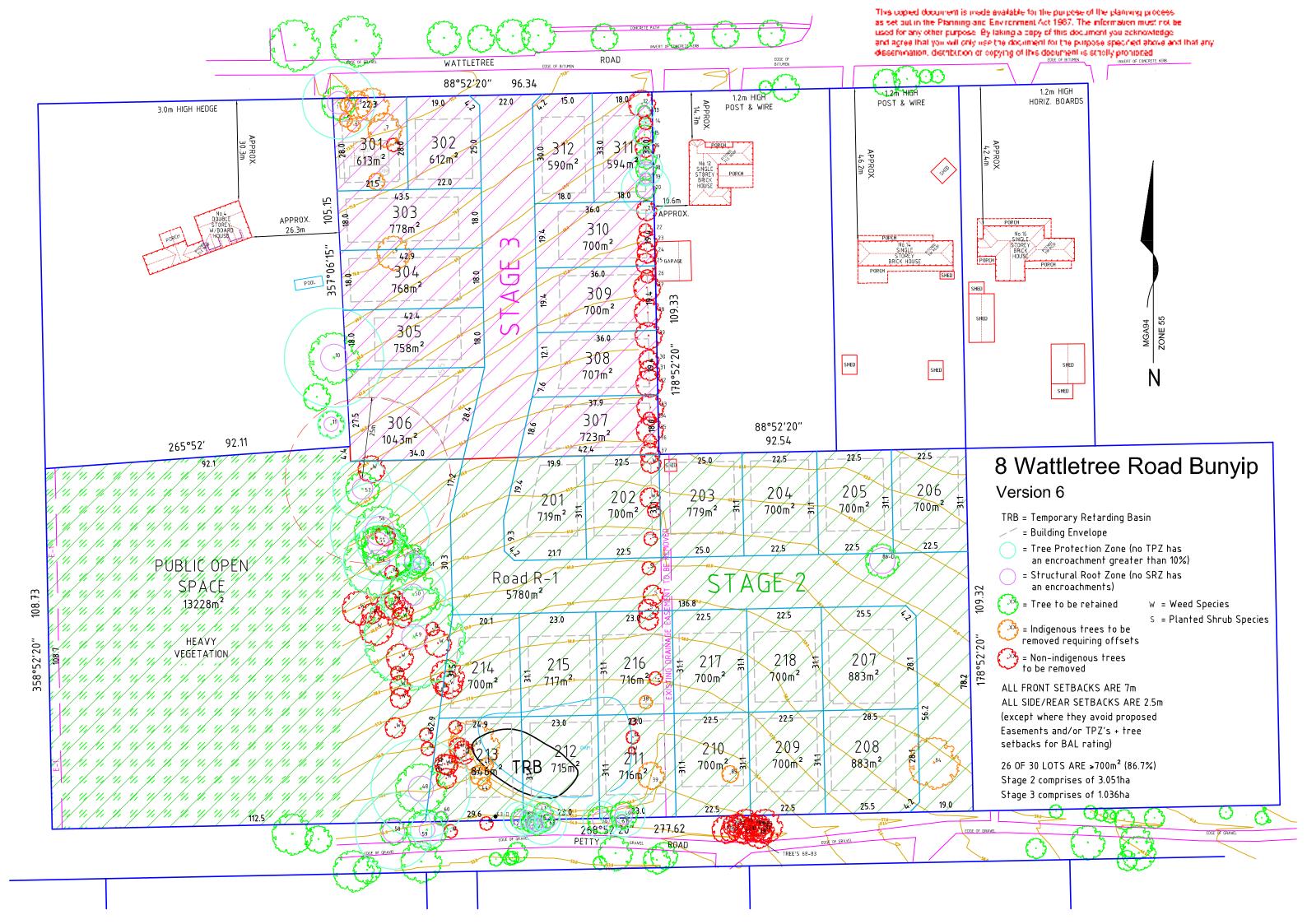
THIS IS A CADASTRAL PLAN PREPARED UNDER THE SUPERVISION OF A LICENSED SURVEYOR.

NOTE:

- LEVELS SHOWN ON THIS PLAN ARE TO A.H.D BASED ON **DROUIN WEST PM 5 (R.L. 47.232)**
- TITLE & BUILDING POSITIONS OFF SUBJECT SITE ARE DISPLAYED FOR INDICATION PURPOSES, USE QUOTED SETBACKS ONLY
- E1 DENOTES 3m WIDE DRAINAGE EASEMENT

DRAWN BY: DUSTIN NGUYEN

CHECKED: T.F


DATE OF SURVEY: 12/12/2022

SURV. REF. NO. 20857

Appendix B – Development Concept Layout Plan

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you acknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted

Appendix C – Pre-development Advice from Melbourne Water

Proposal: Pre-development advice

Site location: Lot No 2, 8 WATTLETREE ROAD BUNYIP 3815

Melbourne Water reference: MWA-1284532

Date referred: 10/03/2023

Development Services Scheme: Bunyip West DS, Cardinia Shire (Western Port Catchment), Cardinia Shire (Western Port Catchment), Cardinia Shire (Western Port Catchment)

Thank you for your application requesting pre-development information for the above mentioned property. The following development advice is applicable to the property:

Drainage Agreement

Prior to the issue of a Statement of Compliance, the Owner must enter into and comply with an agreement with Melbourne Water Corporation, under the Water Act 1989, for the provision of drainage works and the acceptance of surface and storm water from the subject land directly or indirectly into Melbourne Water's drainage system. The agreement may include the following components.

Drainage Contributions

A drainage agreement usually includes the payment of drainage contributions, where a property is being developed. These contributions are used to recover the cost of constructing drainage works such as:

- Main drains, retarding basins, waterway improvements and flood mitigation works that will mitigate hydraulic impacts of the development/subdivision.
- Wetlands and Water Sensitive Urban Design WSUD elements to mitigate stormwater quality risks to Melbourne Water's drainage system.

The contributions are based on the increased load to the drainage system created by the development.

The site in question is located within Melbourne Water's Bunyip West DS, Cardinia Shire (Western Port Catchment), Cardinia Shire (Western Port Catchment), Cardinia Shire (Western Port Catchment) Development Services Scheme.

Melbourne Water advises that the current residential contribution rates are:

 140,283/Ha, comprising of a hydraulic charge of 121,407 /Ha and a stormwater quality charge of 18,876 /Ha

The stormwater quality charge can be reduced or removed by providing on-site treatment works, in-line with Melbourne Water's 'Stormwater Quality Offset Policy'. Please see the 'Stormwater Quality' section below.

It should be noted that contribution rates are subject to periodical review and hence the future contribution rate may be higher than the current rate provided here. For registered users, two months' notice of any change in rates is provided via email and on the Planning and Building page on Melbourne Water's website. Contributions payable will be calculated upon receipt of an application for 'Drainage conditions for a site' along with a council referred/certified plan of subdivision.

Stormwater Quality SWQ

The Urban Stormwater Best Practice Environmental Management Guidelines require that runoff from all new developments (including redevelopments) are treated to comply with the following targets:

- 80% Total Suspended Solids reduction
- 45% Total Phosphorus reduction
- 45% Total Nitrogen reduction

Stormwater quality performance (targets) is assessed by using specialist software. Usually the Model for Urban Stormwater Improvement Conceptualisation (MUSIC) is used for developments within schemes. Please refer to the end of this document for links to Melbourne Water's guidelines for the use of MUSIC.

Non-compliance with best practice objectives for stormwater quality will require the payment of a stormwater quality offset. Contributions collected for stormwater quality, can be applied for as a grant from Melbourne Water by council's to construct stormwater quality works elsewhere in the catchment.

Drainage Scheme Works

A drainage agreement usually requires the construction of permanent works in conjunction with the development as outlined by the appropriate Development Services Scheme. A review of the Bunyip West DS, Cardinia Shire (Western Port Catchment), Cardinia Shire (Western Port Catchment), Cardinia Shire (Western Port Catchment) Development Services Scheme has identified that there are permanent Melbourne Water works to be constructed on this property.

Such works may require that several land surveys be undertaken to determine the most efficient and environmentally friendly design outcomes. These may include, but are not limited to, a Flora & Fauna Assessment and an Archaeological Investigation, which would guide the most appropriate design. Design approval from Melbourne Water and any other relevant authorities will be required prior to commencement of the drainage works.

Please refer to the attached plans for a layout of the proposed works and any overland flow paths, which must be catered for by the development. The following table details the expected drainage works and design criteria for their sizing.

Node Ref.	Length(m)	Comments/Ownership
A4 - A5	19	5% AEP pipe - 525mm Council pipe
A5 - A6	37	5% AEP pipe - 525mm Council pipe
A6 - A7	110	5% AEP pipe - 525mm Council pipe
A7 - A8	55	5% AEP pipe - 600mm Council pipe
A8 - A9	16	5% AEP pipe - 600mm Council pipe
A10 - A10A	163	5% AEP Pipe - 600mm Council pipe
F17A- A14	225	1% AEP Channel - Council pipe
A14 - A15A	110	1% AEP Channel - Melbourne Water
A15A - A16		1% AEP - Culvert Melbourne Water
A16 - A17A	50	1% AEP - Channel Melbourne Water
A17A - A18	157	1% AEP Channel Melbourne Water
WL1		Wetland - Melbourne Water
RB1		Retarding Basin - Melbourne Water

Please be advised that this information may be refined and/or modified upon any application for a works or Non-works offer.

Specific Property Advice

- To achieve appropriate outfall for this development, temporary works will/may be required as part of the drainage agreement. If the development proceeds out of sequence then the developer must fund the costs of these temporary works.
- The developer must negotiate any temporary works with downstream landowner(s) to obtain a free draining outfall solution through their property/ies. Approval must be granted and forwarded to Melbourne Water before construction of the drainage works commences.

Overland Flow Paths

Melbourne Water expects that upon any application for certification of any subdivision plan associated with the property, due consideration must be given to the alignment of roads and reserves with any adjoining estates, to ensure continuity and provide uninterrupted conveyance of overland flows. These overland flow paths must be designed in accordance with the safety criteria outlined in the Standards and Specifications section on the Planning and Building of Melbourne Water's website.

Before starting any works, a separate application, direct to Melbourne Water, must be made for any new or modified storm water connection to Melbourne Water's drains or watercourses. Before accepting an application, evidence must be provided demonstrating that council has considered that it is not feasible to connect to the local drainage system.

Water Sensitive Urban Design WSUD

WSUD is a design process that enables localised collection and treatment of stormwater runoff. Melbourne Water acknowledges the potential for WSUD to be incorporated into the development to enable sustainable management of stormwater across the property and to compliment the social and environmental values of the area.

Melbourne Water recommends that initiatives such as sediment ponds, bio-filtration systems, grassed swales, grey water re-use, rainwater tanks and porous soils be considered in the design of the development. Stormwater runoff from paved areas can also be a valuable resource for irrigating trees, grassed areas and landscaped garden beds.

This copied document is made available for the purpose of the planning process.

Offer Application

as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By taking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

Prior to any application for an offer of drainage conditions, Melbourne Water requests that you forward a drainage strategy demonstrating that the proposed drainage plan for the property coincides with the intent of Melbourne Water's Bunyip West DS, Cardinia Shire (Western Port Catchment), Cardinia Shire (Western Port Catchment) Development Services Scheme and the local Precinct Structure Plan, if relevant.

The following information should be included within the strategy:

- General site information
- Options for the proposed drainage of the property
- Consideration for Water Sensitive Urban Design

Advice Links

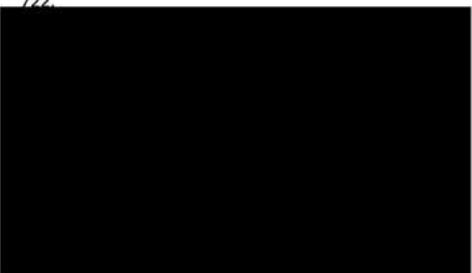
For further information on Melbourne Water's role in planning please refer to the following links:

- Contribution Rates: https://www.melbournewater.com.au/planning-and-building/developer-guides-and-resources/drainage-schemes-and-contribution-rates-0-2
- Drainage Schemes: https://www.melbournewater.com.au/planning-and-building/developer-guides-and-resources/drainage-schemes-and-contribution-rates
- Water Sensitive Urban Designhttps://www.melbournewater.com.au/planning-and-building/stormwatermanagement/introduction-wsud
- Reducing Water Quality Contributions/Stormwater Offset Rate review https://www.melbournewater.com.au/planning-and-building/developer-guidesand-resources/drainage-schemes-and-contribution-rates-0-3
- Overland Flow Paths (These overland flow paths will need to be designed in accordance with the safety criteria outlined in the Standards and Specifications section of Melbourne Water's Planning and Building website found on https://www.melbournewater.com.au/planning-and-building/developer-guides-and-resources/standards-and-specifications
- Working near or Connection to MW assetshttps://www.melbournewater.com.au/planning-and-building/work-or-buildnear-our-assets-or-easements
- Stormwater Quality: The Urban Stormwater Best Practice Environmental Management Guidelines require that runoff from all new developments (including redevelopments) be treated to comply with the following, 'Best Practice' standards criteria: Removal of 80% of the suspended solid annual load, 45% of total phosphorus and 45% of total nitrogen annual loads. http://www.publish.csiro.au/book/2190

Disclaimers

The feasibility information provided in this email is conceptual/indicative only and must be used in conjunction with an informed catchment analysis when undertaking the detailed design.

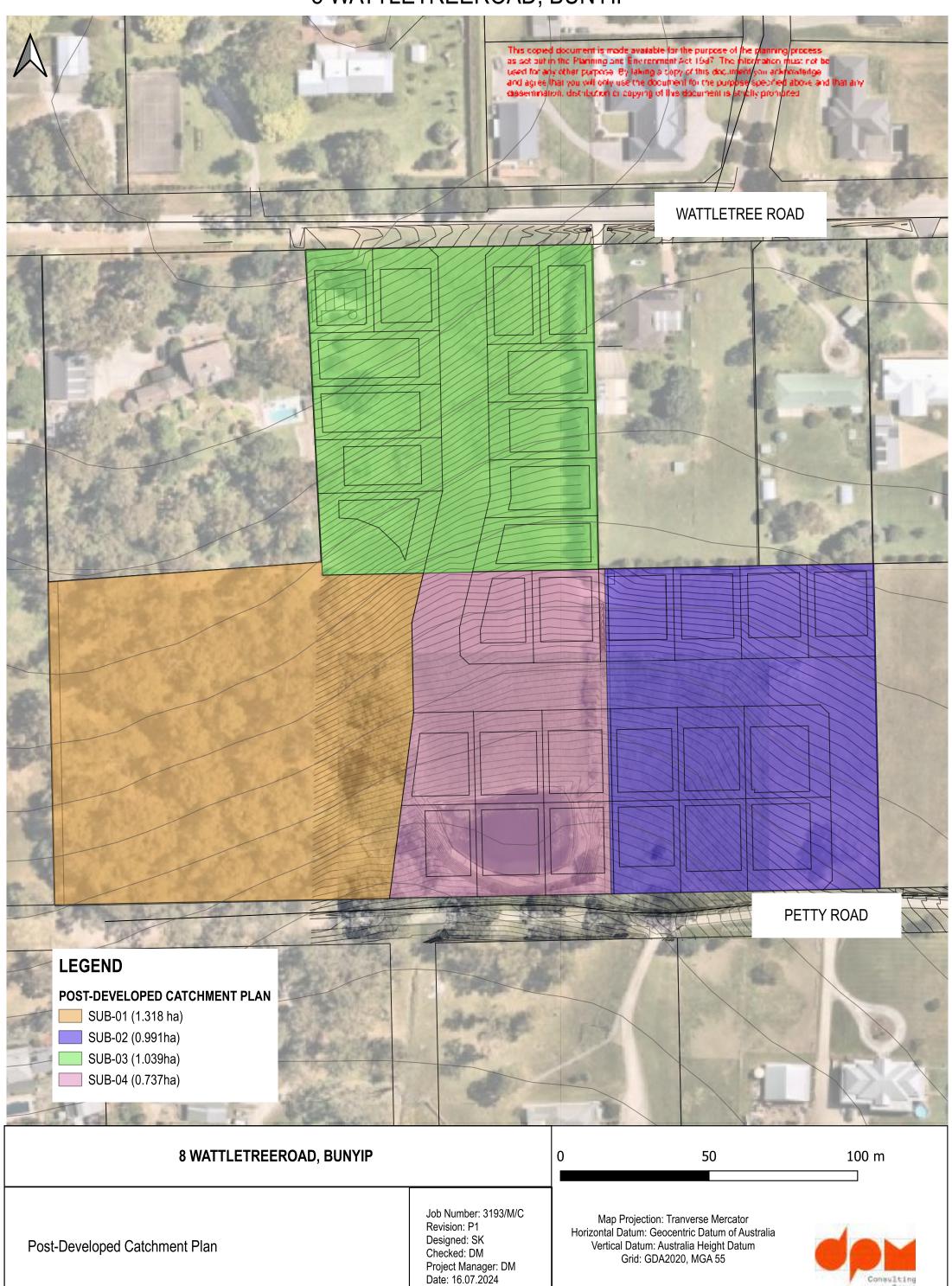
Under the QA process the consultant is required to perform their own informed catchment analysis and calculations for the design of scheme assets which reflects the actual development and on ground conditions. As a part of the functional

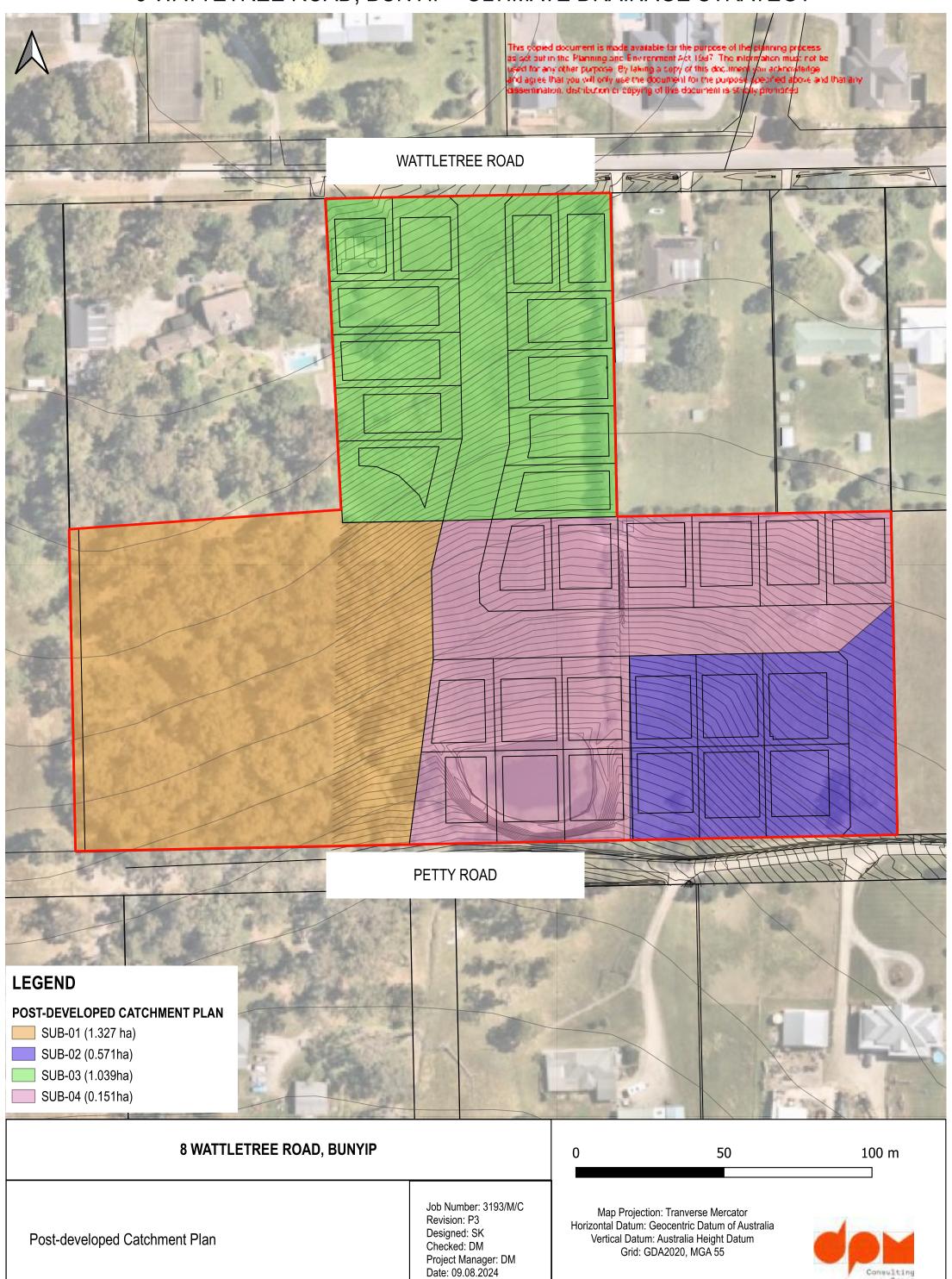


design process your calculations, assumptions, models and catchment analysis are to be submitted for our acceptance/records.

Please note that as schemes develop and Melbourne Water receives additional information, the conceptual/indicative advice you have been provided as part of the feasibility request may now be outdated. Under the QA process it is the responsibility of the consultant to certify that all information provided to Melbourne Water is correct having completed their own detailed catchment analysis.

This information is preliminary and forms no contractual agreement between your company and Melbourne Water. Melbourne Water reserves the right to alter any or all of the information provide in this letter.


For general development enquiries contact our Customer Service Centre on 131 722.



8 WATTLETREEROAD, BUNYIP

8 WATTETREE ROAD, BUNYIP - ULTIMATE DRAINAGE STRATEGY

Appendix E – Drainage Computation

	8 WATTLETREE ROAD, BUNYIP - PRE-DEVELOPED CATCHMENT - FLOW CALCULATIONS																		
							Flow-length	Pillgrim & McDermott	Bransby Williams	Average	Pipe								
Catchment	Area [ha]	L [m]	H _{UP-STREAM} [m]	H _{DOWN-STREAM} [m]	S [m/km]	S [%]	Tc [min]	Tc [min]	Tc [min]	Tc [min]	Tc [min]	Φ	C _s	C ₁₀₀	I _s [mm/hr]	I ₁₀₀ [mm/hr]	$Q_{100} [m^3/s]$	$Q_S[m^3/s]$	$Q_{GAP} [m^3/s]$
SUB-01	1.317	166.14	68.0	54.0	84.27	8.43%	9.77	6.06	8.80	8.21	8.11	0.1	0.195	0.246	70.5	133.0	0.120	0.050	0.070
SUB-02	1.031	142.22	66.6	54.6	84.24	8.42%	9.37	5.45	8.02	7.61	7.95	0.1	0.195	0.246	70.5	133.0	0.094	0.039	0.054
SUB-03	1.746	211.91	73.0	56.3	78.90	7.89%	10.53	7.45	9.79	9.26	8.41	0.1	0.195	0.246	70.5	127.0	0.1517	0.0667	0.0851
OVERALL CATCHMENT	4.09	211.90	73.0	56.3	78.91	7.89%	10.53	6.28	13.54	12.04	8.41	0.1	0.195	0.246	70.5	111.0	0.311	0.156	0.155

Location

Label Services
Labels St. (b) Phase yet at 16,000 (0)
templeh. (b) St. (b) are yet at 16,000 (0)

IFS Design Ratiofall	Depth (curs)	
the first hand the markets of	CONTRACTOR OF THE STREET	111 minimum (11)

		-	-	-	MARKET DE	APP	
Dester	626	MIN.	2067	1046	99	Phot	OPE.
1,000	141	1.0	- 488	1,070	100	4.00	4.4
Pulmer:	1.60	LUVAS.	16	456	100	3.00	1044
l-post	4.81	- 1114	12.541	010	100	446	4-8
T-860	4-81	+44	100	100	1.0	190	1,00
1 Augus	+91	- 711	110.	1879	7.4	-116	184
H-min	0.470	- 148		- 107	1 248	0.000	194
ARREST.	141	2.64	197	100.00		314	-80
Market	10.544	1,384	- 341	- E4		310	1.00
(Frank)	19.4	- 14-1	- 44	- 01	1.00	458	0.000
Maye.	18.0	200	- 100	-000	3,940	P15	360
16 ante	11.1	150	100	304	CHE		1.744
t best	414	161		00.014	1.365	1616	1 100
LO SALES	11.0	100		-868	- 454	-810	44.0
i teat	18.5	1000	1004	1000	74.0	HA2	10
i tem	144	104	- 10		-	18840	- 684
4.55660	19-1	191	-34	1006	. 256	413	-864
ir best	791	141	- 401	- 10.2	- 15.1	412	1.114
E bear	000	(1)	-61	- 01	0.00	1000	1.26
1 Stewart	78-6	190		1.600	THE	91.1	-539
1 Ethior	- 511	- 40	151	0.794	MA-	460	1045
per State 6	1 (41)	100	10.0	010	1900	800	
Of States	25.4	10th	25.768	957	IE.	480	1.00
Different Co.	114	194	1.764	10.7	- 40	410	- 19
PERMIT	ELCH4		100	- 96	- 100	200	1000
13 State	48.0	79.0	19.5	87.		. 170	. 19
Million .	(19)	794	LAN	COMP.	100	170	10.00
HE SAID	10.0	000	100	-	-		- 10
title bear	(CM)	100	00		18	- 441	n
sen bear	10.0	- 100	100		40	980	1.34

hart (Size)							- (
		-	-	-	al the Di		
PRESE	1000	BOOK.	20001	100	ARC.	100	100
1000.	199.5	70.0	-	1,000	141	1,000	- 11
Ame	TALK.	-	-	148	C 388	404	- 14
Title:	-00.6	- 11	- 101	129	1.04	141	- 11
T NOT	1977	10.5	195.5	110	-101	188	- 11
N page	90.0	- Amile	00,000	1.88	1.08	3,00	- 41
M mm	-01	100.6	/ WA	798	187	100	- 11
All pain	.70.6	97.5	3.7	(0.4)	170.8	ACS.	14.
7F (00)	.00.0	0.00	THE R.	1918	25.0	10.1	20
	-0.4	- 100	100.6	144	1944	***	10
THE REAL PROPERTY.	23,3	30	24	10.404	1.497	-80	- 14
mi pyte		- 30.0	- 31	-: 143	-103	***	11.
9 field	10.8	100	m4	1816	18-4	1949	10
3.9 tops	10.8	100	204	. (214)	17/8	.000	13.
3 hours	4.00	-0.0	-01	104	144	,860-	- 11
O Spilet	7.00	2.00	10.4	100.0	1.60	1,010	1.0
A P Since	140	0.00	943		1914	1973	10
Il book	-4.00	1-18		1,046	0.99	LET	11
it from:	3/4	*11	113	1.00	5.63	1.01	11,
the basis	440	15.64	11.10	248	0.41	11/84	8.0
Off Spins	1.10	1.00	175	100	941	3149	10
(in figure	1.0	1111	1.14	1000	-11	111	111
Or Soul	146	1.00	0.10	2.00	10.01	0.09	114
The Street	- 4.00			1100	-011	1199	
Of the last	110	1 444	0.379	110		0.00	10.5
20 Sept	-549	LAST	- 1120	149	1.8	938	2.1
per facial	9.04	- 0.00	- 10		1-44	641	64
DOMEST !	1100	1100	1100	1198	137	1,19	1.4
1994 boom	1189	1 YORK	3399	0.909	CASE	3.28	14
SER SOME	147	1.000	4404	6.795	6.004	444	1.3

Wit Davies Strinfed Manager Installa

v [m/s]	1.5	2
¹ I ₁₀ [mm/hr]	27.1	
C ₁₀ '	0.12793	

	8 WATTLETREE ROAD, BUNYIP - POST-DEVELOPED CATCHMENT - FLOW CALCULATIONS																		
							Flow-length	Pillgrim & McDermott	Bransby Williams	Average	Pipe								
Catchment	Area [ha]	L [m]	H _{UP-STREAM} [m]	H _{DOWN-STREAM} [m]	S [m/km]	S [%]	Tc [min]	Tc [min]	Tc [min]	Tc [min]	Tc [min]	Φ	C _s	C ₁₀₀	I _s [mm/hr]	I ₁₀₀ [mm/hr]	Q ₁₀₀ [m ³ /s]	$Q_S [m^3/s]$	$Q_{GAP} [m^3/s]$
SUB-01	1.287	156.59	68.4	54.00	91.96	9.20%	8.74		8.72	8.73	8.04	0.1	0.195	0.246	70.5	127	0.112	0.049	0.063
SUB-02	0.990	163.77	62.4	54.6	47.63	4.76%	8.82		7.89	8.36	8.09	0.6	0.562	0.709	70.5	133	0.260	0.109	0.151
SUB-03	1.039	116.79	72	63	77.06	7.71%	8.30		8.04	8.17	7.78	0.6	0.562	0.709	70.5	133	0.273	0.114	0.158
SUB-04	0.778	116.30	63.00	54.00	77.39	7.74%	8.29		7.20	7.75	7.78	0.6	0.562	0.709	70.5	133	0.204	0.086	0.118
OVERALL CATCHMENT	4.09	228.46	72.00	54.00	78.79	7.88%	9.54		13.54	11.54	8.52	0.52	0.503	0.635	70.5	116	0.839	0.404	0.435
A5-A6 Catchment	6.0	600.00	70.00	62.71	12.15	1.22%	13.67		15.66	14.66	11.00	0.75	0.672	0.848	66.8	127	1.797	0.748	1.049

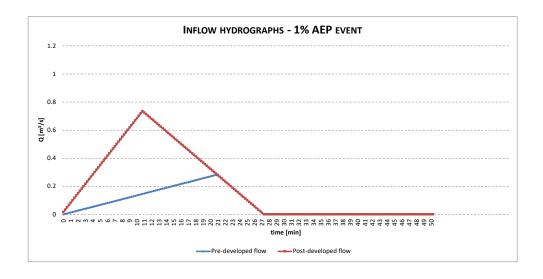
1.044105

Location

Calculation for constructing and an expectation of the construction of the constructio

IFS Design Ratiofall	Depth (curs)	man the second	
Market April 16, Horston, etc. of this feet have blade analysis for			

		-	-	-	Markly (A	409	
Depter	60,2%	MIN.	2067	1000	99	P0-1	OPE-
1,000	141	1.0	- 488	1,000	100	4.00	4.4
Date:	1.91	VAL.	1.00	459	100	3.00	(44)
l man	4.81	1.14	12.541		10	440	1.0
T-2000	4.01	+44	- 10	1.00	3.00	1,180	1.00
T-Mark	491	- 711	110.	1879	14	-116	1100
H-min	6.71	- 148		- 0.7	PAR	0.000	- 194
ARREST.	141	7.44	100	100.00		(814)	-80
Meser	0.540	1,000	- 31	- E4		310	(A)
(Pate	1944	144	- 44		1.00	458	0.000
THE PART.	18.0	1944	- 100	-80.0	3,946	715	100
18 min	78.8	159	1.00	304	C.BE		1.19
t best	114	161		0.014	1.000	1999	1 14
1.5 tion	15.6	188		-010	-84	44.0	44.0
i tea	1.06.1	1000	100	100	74.0	- HJ	10
i tea	144	+64	- 34			1844	- 68-1
4.55MG	39-1	191	-34	100		413	-86
ir best	791	141	- 401	- 10.2	. 195.1	412	1.117
t bear	100	(1) (00)	-01	- 100) (m)	900	1.26
1 Steen	78-6	194	C-29-8	1.000	THE		-519
1 Statute	- 101	- 10	151	10.794	MA-	400	110
per la sel	1 101	1994	101	910	1907	- 800	
OR States	-154	11 FEET	22-266	FIX	I IE	480	
Diffesion .	- 162	194	-0.7kg	10.7	5 de	190	- 10
PERM	CME		1004		-	241	10,0
15 State	48.0	. 1918	19.6			170	. 39
PR Steer	1.187	794	ARE	- 24	100	170	1.00
HE SAID	10.0	000	100	-	-		- 10
149 brot	1000	464			100		T.n
148 bear	111	- 600	111		480	100	1.34


ton (char						-	- (
		-	-	-	and the last	-	
De Fine	49.00	.000a	20mm()	100	490.1	1991	400
1000	189.7	- 764		1,000	181	1,000	110
A.min	MA	- 044	-	148	10,000	404	141
l see	46.6	- 91	- 44	123	1.04	141	14
TAKE .	1953	100	- 10.1	37.10	101	188	10
100	- 91,0	- Jack	10,000	1.00	1.08	3,00	- 11
III ma		100.6	/ mil	760	184	.00	- 11
All pain	-,10.8	- 85.5	30.7	453	10.8	Mil	84.3
m late	.00.0	0.00	m.A.	7018	75.0	1911	20-1
	1944	- 10	00.6	164	104	484	164
T NO.	- 33	30.5	- 34	100	197	-80	16.7
M NO.	- 404	- 30	- 21	- 44	-103	463	11.
t final	10.8	100	m4	1816	18.4	1949	184
S.S byen	10.8	20,6	204	. (214)	1719	.00	13.7
P Solya	4.00	-0.8	-01	104	144	,860	143
T Spice	7.00	810	10.4	0.0	1,611	1,000	111
A.O. Sales	140	0.00	943	- 64	194	993	101
B book	-4.00	11.00		1,046	9.99	HIT	111
th forces	3/4	*11	110	1.00	5.63	101	16.0
to being	440	1144	11.65	248	5-81	11/86	8.8
Of Spins	1,10	18	130	100	941	349	100
(ref) form	1.00	1111	1.14	1100	-11	111	119
the Street	146	3.00	0.10	2.00	1011	0.09	he
The state of the s	- 440			1100	-011	1199	-
Of Street	118	1 444	0.279	110		0.00	10.00
70 Sept	549	- NAT	- 1998	148	1.8	938	2.0
per Sanda	904	-0.00	- 100	-	1.04	641	64
DOMESTIC:	1100	1100	1100	1.798	131	1,19	1.8
1984 Bridge	2888	1000	3.99	5.009	1335	3.24	1.6
LES Anno	147	1.000	4408	6/96	0.004	444	1.30

Detention Volume - sizing - 1% AEP storm event

	Pre-de	veloped			Post-d	eveloped		Detention tank
t [sec]	t [min]	Q [m ³ /s]	V [m³]	t [sec	t [min]	Q [m ³ /s]	V [m³]	V [m ³]
0	0	0	0	0	0	0	0	0
15	0.25		0.050893	15	0.25	0.016715	0.25073	0.200
30	0.5		0.152679	30	0.5	0.033431	0.75219	0.600
45	0.75		0.305357	45	0.75	0.050146	1.50438	1.199
60	1		0.508929	60	1	0.066861	2.5073	1.998
75	1.25		0.763393	75	1.25	0.083577	3.76095	2.998
90	1.5	0.020357	1.06875	90	1.5	0.100292		4.197
105	1.75	0.02375	1.425	105	1.75	0.117007	7.020439	5.595
120	2	0.027143	1.832143	120	2	0.133723	9.026279	7.194
135	2.25	0.030536	2.290179	135	2.25	0.150438	11.28285	8.993
150	2.5	0.033929		150	2.5	0.167153	13.79015	10.991
165	2.75	0.037321	3.358929	165	2.75	0.183869	16.54818	13.189
180	3		3.969643	180	3	0.200584	19.55694	15.587
195	3.25	0.044107	4.63125	195	3.25	0.217299	22.81643	18.185
210	3.5	0.0475	5.34375	210	3.5	0.234015		20.983
225	3.75		6.107143	225	3.75	0.25073	30.0876	23.980
240	4		6.921429	240	4	0.267445	34.09928	27.178
255	4.25	0.057679	7.786607	255	4.25	0.284161	38.36169	30.575
270 285	4.5 4.75		8.702679	270	4.5 4.75	0.300876 0.317591		34.172
300	4.75 5	0.067857	9.669643 10.6875	285 300	4.75 5	0.317591	52.65329	37.969 41.966
315	5.25	0.067857	11.75625	315	5.25	0.354307		41.966
330	5.25	0.07123	12.87589	330	5.5	0.367737	63.43468	50.559
345	5.75	0.078036	14.04643	345	5.75	0.384453	69.20147	55.155
360	6	0.081429	15.26786	360	6	0.401168	75.21899	59.951
375	6.25	0.084821		375	6.25	0.417883	81.48724	64.947
390	6.5	0.088214	17.86339	390	6.5	0.434599	88.00622	70.143
405	6.75	0.091607	19.2375	405	6.75	0.451314	94.77593	75.538
420	7	0.095	20.6625	420	7	0.468029	101.7964	81.134
435	7.25	0.098393	22.13839	435	7.25	0.484745	109.0675	86.929
450	7.5	0.101786	23.66518	450	7.5	0.50146	116.5894	92.924
465	7.75	0.105179	25.24286	465	7.75	0.518175	124.3621	99.119
480	8	0.108571	26.87143	480	8	0.534891		105.514
495	8.25	0.111964	28.55089	495	8.25	0.551606		112.109
510	8.5	0.115357	30.28125	510	8.5	0.568321		118.903
525	8.75 9	0.11875	32.0625	525	8.75	0.585037	157.9599	125.897
540 555	9 9.25	0.122143 0.125536	33.89464 35.77768	540 555	9 9.25	0.601752 0.618467	166.9862 176.2632	133.092 140.485
570	9.25		37.71161	570	9.25	0.635183		140.485
585	9.75		39.69643	585	9.75	0.651898		155.873
600	10	0.135714	41.73214	600	10	0.668613		163.866
615	10.25	0.139107	43.81875	615	10.25	0.685329	215.8785	172.060
630	10.5	0.1425	45.95625	630	10.5	0.702044		180.453
645	10.75	0.145893	48.14464	645	10.75	0.718759	237.1906	189.046
660	11	0.149286	50.38393	660	11	0.735475	248.2227	197.839
675	11.25	0.152679	52.67411	675	11.25	0.724331	259.0876	206.414
690	11.5	0.156071	55.01518	690	11.5	0.713187	269.7854	214.770
705	11.75	0.159464	57.40714	705	11.75	0.702044		222.909
720	12	0.162857	59.85	720	12	0.6909	290.6796	230.830
735	12.25	0.16625	62.34375	735	12.25	0.679757	300.876	238.532
750	12.5	0.169643	64.88839	750	12.5	0.668613	310.9052	246.017
765	12.75	0.173036	67.48393	765	12.75	0.65747	320.7672	253.283
780	13	0.176429	70.13036	780	13	0.646326	330.4621	260.332
795 810	13.25 13.5	0.179821 0.183214		795 810	13.25 13.5	0.635183 0.624039	339.9898 349.3504	267.162 273.775
810 825	13.5	0.183214	78.375	810 825	13.5	0.624039	349.3504 358.5439	280.169
840	13.75	0.186607	78.375 81.225	825 840	13.75	0.601752		286.345
855	14.25		84.12589	855	14.25		376.4293	292.303
000	1	2.133333		033	125	3.335500	- , 0 33	252.505

			Δt [sec]	15	
Q ₁₀₀ [m ³ /s]	0.285	Pre-developed	Q ₁₀₀ [m ³ /s]	0.735	Developed
Tc [min]	21.00	peak flow	Tc [min]	11.00	peak flow
Tc [sec]	1260		Tc [sec]	660	
	0.000226	5		0.001114	1
T [min]	27.5	end simulation	T [min]	27.5	end simulation
T [sec]	1650		T [sec]	1650	
	0.000731	L		0.000743	3

870	14.5	0.196786	87.07768	870	14.5	0.579465	385.1212
885	14.75	0.200179	90.08036	885	14.75	0.568321	393.6461
900	15	0.203571	93.13393	900	15	0.557178	402.0037
915	15.25		96.23839	915	15.25		410.1942
930	15.5		99.39375	930	15.5		418.2176
945	15.75	0.21375	102.6	945	15.75		426.0738
960	16		105.8571	960	16		433.7628
975 990	16.25 16.5		109.1652 112.5241	975 990	16.25 16.5		441.2847 448.6395
1005	16.75		115.9339	1005			455.8271
1003	17		119.3946	1020			462.8475
1035	17.25		122.9063	1035			469.7008
1050	17.5	0.2375	126.4688	1050			476.3869
1065	17.75		130.0821	1065			482.9059
1080	18	0.244286	133.7464	1080	18	0.423455	489.2577
1095	18.25	0.247679	137.4616	1095	18.25	0.412312	495.4424
1110	18.5	0.251071	141.2277	1110	18.5	0.401168	501.4599
1125	18.75		145.0446	1125			507.3103
1140	19		148.9125	1140			512.9935
1155	19.25		152.8313	1155			518.5096
1170	19.5		156.8009	1170			523.8585
1185	19.75		160.8214	1185			529.0402
1200	20		164.8929 169.0152	1200			534.0548
1215 1230	20.25 20.5		173.1884	1215 1230		0.323163	538.9023 543.5826
1245	20.5		177.4125	1245			548.0957
1260	21	0.285	181.6875	1260			552.4417
				1275			556.6205
				1290			560.6322
				1305	21.75	0.256302	564.4767
				1320	22	0.245158	568.1541
				1335	22.25	0.234015	571.6643
				1350	22.5	0.222871	575.0074
				1365	22.75	0.211728	578.1833
				1380			581.1921
				1395		0.18944	
				1410			586.7081
				1425			589.2154
				1440		0.15601	
				1455 1470			593.7286 595.7344
				1485			597.5731
				1500			599.2446
				1515			
				1530			602.0862
				1545			603.2563
				1560	26		604.2592
				1575	26.25	0.055718	605.095
				1590	26.5	0.044574	605.7636
				1605	26.75	0.033431	606.2651
				1620			606.5994
				1635			606.7665
				1650		0	606.7665
				1665		0	606.7665
				1680		0 0	606.7665
				1695			606.7665
				1710 1725		0	606.7665 606.7665
				1725 1740		0	606.7665
				1755		0	606.7665
				1770		0	606.7665
				1785		0	606.7665
				1800		0	606.7665
				1000	20.05		

1815

30.25

0

606.7665

298.044

303.566

308.870

313.956

318.824

323.474

327.906

332.120

336.115

339.893

343,453

346,795

349.918

352.824

355.511

357.981

360.232

362.266

364.081

365.678

367.058

368.219

369.162

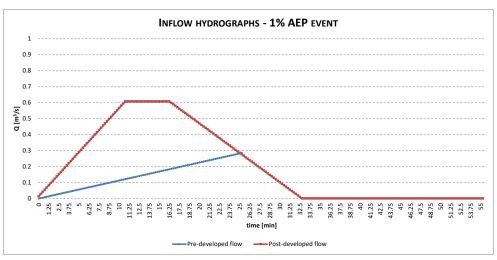
369.887

370.394

370.683

370.754

1830	30.5	0	606.7665
1845	30.75	0	606.7665
1860	31	0	606.7665
1875	31.25	0	606.7665
1890	31.5	0	606.7665
1905	31.75	0	606.7665
1920	32	0	606.7665
1935	32.25	0	606.7665
1950	32.5	0	606.7665
1965	32.75	0	606.7665
1980	33	0	606.7665
1995	33.25	0	606.7665
2010	33.5	0	606.7665
		-	
2025	33.75	0	606.7665
2040	34	0	606.7665
2055	34.25	0	606.7665
2070	34.5	0	606.7665
2085	34.75	0	606.7665
2100	35	0	606.7665
2115	35.25	0	606.7665
2130	35.5	0	606.7665
2145	35.75	0	606.7665
2160	36	0	606.7665
2175	36.25		
		0	606.7665
2190	36.5	0	606.7665
2205	36.75	0	606.7665
2220	37	0	606.7665
2235	37.25	0	606.7665
2250	37.5	0	606.7665
2265	37.75	0	606.7665
2280	38	0	606.7665
2295	38.25	0	606.7665
2310	38.5	0	606.7665
2325	38.75	0	606.7665
		0	
2340	39		606.7665
2355	39.25	0	606.7665
2370	39.5	0	606.7665
2385	39.75	0	606.7665
2400	40	0	606.7665
2415	40.25	0	606.7665
2430	40.5	0	606.7665
2445	40.75	0	606.7665
2460	41	0	606.7665
2475	41.25	0	606.7665
2490	41.5	0	606.7665
2505		0	606.7665
	41.75		
2520	42	0	606.7665
2535	42.25	0	606.7665
2550		0	
	42.5		606.7665
2565	42.75	0	606.7665
2580	43	0	606.7665
2595	43.25	0	606.7665
2610	43.5	0	606.7665
2625	43.75	0	606.7665
2640	44	0	606.7665
2655	44.25	0	606.7665
2670	44.5	0	606.7665
2685	44.75	0	606.7665
2700	45	0	606.7665
2715	45.25	0	606.7665
2730	45.5	0	606.7665
2745	45.75	0	606.7665
		0	
2760	46		606.7665
2775	46.25	0	606.7665


2790	46.5	0	606.7665
2805	46.75	0	606.7665
2820	47	0	606.7665
2835	47.25	0	606.7665
2850	47.5	0	606.7665
2865	47.75	0	606.7665
2880	48	0	606.7665
2895	48.25	0	606.7665
2910	48.5	0	606.7665
2925	48.75	0	606.7665
2940	49	0	606.7665
2955	49.25	0	606.7665
2970	49.5	0	606.7665
2985	49.75	0	606.7665
3000	50	0	606.7665
3015	50.25	0	606.7665
3030	50.5	0	606.7665

Detention Volume - sizing - 1% AEP event - OPTION 1

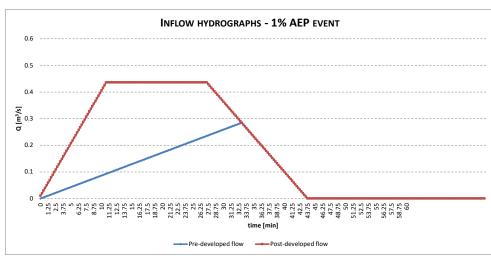
	Pre-de	veloped			Post-de	eveloped		Detention tank
t [sec]	t [min]	Q [m ³ /s]	V [m³]	t [sec]	t [min]	Q [m ³ /s]	V [m³]	V [m ³]
0	0	0	0	0	0	0	0	0
15	0.25	0.002822	0.042327	15	0.25	0.013805	0.207068	0.165
30	0.5	0.005644	0.12698	30	0.5	0.027609	0.621205	0.494
45	0.75	0.008465	0.25396	45	0.75	0.041414	1.24241	0.988
60	1	0.011287	0.423267	60	1	0.055218	2.070684	1.647
75	1.25	0.014109	0.634901	75	1.25	0.069023	3.106026	2.471
90	1.5	0.016931	0.888861	90	1.5	0.082827	4.348436	3.460
105	1.75	0.019752	1.185149	105	1.75	0.096632	5.797914	4.613
120	2	0.022574	1.523762	120	2	0.110436	7.454461	5.931
135	2.25		1.904703	135	2.25	0.124241		7.413
150	2.5	0.028218	2.32797	150	2.5	0.138046	11.38876	9.061
165	2.75	0.03104	2.793564	165	2.75	0.15185	13.66651	10.873
180	3	0.033861	3.301485	180	3	0.165655	16.15133	12.850
195	3.25	0.036683	3.851733	195	3.25	0.179459	18.84322	14.991
210	3.5	0.039505	4.444307	210	3.5	0.193264	21.74218	17.298
225	3.75	0.042327	5.079208	225	3.75	0.207068	24.8482	19.769
240	4	0.045149	5.756436	240	4	0.220873	28.1613	22.405
255	4.25	0.04797	6.47599	255	4.25	0.234677	31.68146	25.205
270	4.5	0.050792	7.237871	270	4.5	0.248482	35.40869	28.171
285	4.75	0.053614	8.042079	285	4.75	0.262287	39.34299	31.301
300	5	0.056436	8.888614	300	5	0.276091	43.48436	34.596
315	5.25	0.059257	9.777475	315	5.25	0.289896	47.83279	38.055
330	5.5	0.062079	10.70866	330	5.5	0.3037	52.3883	41.680
345	5.75	0.064901	11.68218	345	5.75	0.317505	57.15087	45.469
360	6 6.25	0.067723	12.69802	360	6 6.25	0.331309	62.12051	49.422
375		0.070545	13.75619	375		0.345114	67.29722	53.541
390 405	6.5 6.75	0.073366 0.076188	14.85668 15.9995	390 405	6.5 6.75	0.358919 0.372723	72.681 78.27184	57.824
405	7	0.076188	17.18465	405	7	0.372723	84.06976	62.272 66.885
435	7.25	0.07301	18.41213	435	7.25	0.400332	90.07474	71.663
450	7.23	0.081652	19.68193	450	7.23	0.400332	96.28679	76.605
465	7.75	0.087475	20.99406	465	7.75	0.427941	102.7059	81.712
480	8	0.090297	22.34851	480	8	0.441746	109.3321	86.984
495	8.25	0.093119	23.7453	495	8.25	0.45555	116.1654	92.420
510	8.5	0.095941		510	8.5	0.469355	123.2057	98.021
525	8.75	0.098762		525	8.75	0.48316	130.4531	103.787
540	9	0.101584	28.1896	540	9	0.496964	137.9075	109.718
555	9.25	0.104406	29.75569	555	9.25	0.510769	145.5691	115.813
570	9.5	0.107228	31.36411	570	9.5	0.524573	153.4377	122.074
585	9.75	0.11005	33.01485	585	9.75	0.538378	161.5133	128.498
600	10	0.112871	34.70792	600	10	0.552182	169.7961	135.088
615	10.25	0.115693	36.44332	615	10.25	0.565987	178.2859	141.843
630	10.5	0.118515	38.22104	630	10.5	0.579791	186.9827	148.762
645	10.75	0.121337	40.04109	645	10.75	0.593596	195.8867	155.846
660	11	0.124158	41.90347	660	11	0.607401	204.9977	163.094
675	11.25	0.12698	43.80817	675	11.25	0.607401	214.1087	170.301
690	11.5	0.129802	45.7552	690	11.5	0.607401	223.2197	177.465
705	11.75	0.132624	47.74455	705	11.75	0.607401	232.3307	184.586
720	12	0.135446	49.77624	720	12	0.607401	241.4417	191.665
735	12.25	0.138267	51.85025	735	12.25	0.607401	250.5527	198.702
750	12.5	0.141089	53.96658	750	12.5	0.607401		205.697
765	12.75	0.143911	56.12525	765	12.75	0.607401	268.7747	212.649
780	13	0.146733	58.32624	780	13	0.607401	277.8858	219.560
795	13.25	0.149554	60.56955	795	13.25	0.607401	286.9968	226.427
810	13.5	0.152376	62.8552	810	13.5	0.607401	296.1078	233.253
825	13.75	0.155198	65.18317	825	13.75	0.607401		240.036
840	14	0.15802	67.55347	840	14	0.607401		246.776
855	14.25	0.160842	69.96609	855	14.25	0.607401	323.4408	253.475

			Δt [sec]	15	
Q ₁₀₀ [m ³ /s]	0.285	Pre-developed	Q ₁₀₀ [m ³ /s]	0.607	Developed
1001		•	200 1 1		·
Tc [min]	25.25	peak flow	Tc [min]	11.00	peak flow
Tc [sec]	1515		Tc [sec]	660	
	0.000188			0.00092	
Tc [min]			Tc [min]	16.50	end of storm
Tc [sec]			Tc [sec]	990	
T [min]	33	end simulation	T [min]	33	end simulation
T [sec]	1980		T [sec]	1980	
	0.000144			0.000614	ļ.

Detention volume [m³] 419

870	14.5	0.163663	72.42104	870	14.5	0.607401	332.5518	2	60.131
885	14.75		74.91832	885	14.75		341.6628		66.744
900	15		77.45792	900	15		350.7738		73.316
915	15.25		80.03985	915		0.607401	359.8848 368.9958		79.845
930 945	15.5 15.75		82.66411 85.33069	930 945	15.5 15.75		368.9958		.86.332 .92.776
960	16	0.177772		960	16		387.2179		99.178
975	16.25		90.79084	975	16.25		396.3289		05.538
990	16.5		93.58441	990	16.5		405.4399		11.855
1005	16.75	0.189059	96.4203	1005	16.75	0.598198	414.4128	3	17.993
1020	17	0.191881	99.29851	1020	17	0.588994	423.2478	3	23.949
1035	17.25	0.194703	102.2191	1035	17.25	0.579791	431.9446	3	29.726
1050	17.5		105.1819	1050	17.5		440.5035		35.322
1065	17.75		108.1871	1065		0.561385			40.737
1080	18		111.2347	1080	18		457.207		45.972
1095 1110	18.25 18.5		114.3245 117.4567	1095 1110	18.25	0.542979	465.3517		51.027 55.902
1110	18.75		120.6312	1110		0.533776			60.596
1140	19		123.848	1140			488.9574		65.109
1155	19.25		127.1072	1155	19.25	0.506167	496.55		69.443
1170	19.5		130.4087	1170			504.0044		73.596
1185	19.75	0.222921	133.7525	1185	19.75	0.487761	511.3208	3	77.568
1200	20		137.1386	1200	20	0.478558	518.4992	3	81.361
1215	20.25		140.5671	1215		0.469355			84.972
1230	20.5		144.0379	1230	20.5		532.4418		88.404
1245	20.75		147.551	1245	20.75		539.206		91.655
1260	21		151.1064	1260	21		545.8322		94.726
1275 1290	21.25 21.5		154.7042 158.3443	1275 1290	21.25 21.5	0.432543	552.3204 558.6705		97.616
1305	21.5		162.0267	1305	21.5		564.8825		100.326 102.856
1320	22.73		165.7515	1320	21.73		570.9565		105.205
1335	22.25		169.5186	1335	22.25		576.8925		107.374
1350	22.5		173.328	1350	22.5		582.6904		109.362
1365	22.75	0.256782	177.1797	1365	22.75	0.377325	588.3503	4	11.171
1380	23	0.259604	181.0738	1380	23	0.368122	593.8721	4	12.798
1395	23.25		185.0101	1395	23.25		599.2559		14.246
1410	23.5		188.9889	1410	23.5		604.5016		15.513
1425	23.75		193.0099	1425		0.340512			16.599
1440	24		197.0733	1440	24 24.25		614.5789 619.4105		17.506
1455 1470	24.25 24.5	0.273713 0.276535		1455 1470	24.25		624.1041		18.232 18.777
1485	24.75		209.5173	1485		0.3037			19.142
1500	25	0.282178		1500	25		633.077		19.327
1515	25.25	0.285	218.025	1515	25.25	0.285294	637.3564	4	19.331
				1530	25.5	0.276091	641.4978		
				1545	25.75	0.266888	645.5011		
				1560	26	0.257685	649.3664		
				1575	26.25	0.248482			
				1590	26.5				
				1605	26.75				
				1620	27 27.25	0.220873			
				1635 1650	27.25	0.21167	666.6221		
				1665	27.5	0.202467			
				1680	28	0.184061			
				1695	28.25	0.174858			
				1710	28.5	0.165655			
				1725	28.75	0.156452			
				1740	29	0.147249			
				1755	29.25	0.138046			
				1770	29.5	0.128843			
				1785	29.75		690.7801		
				1800	30	0.110436			
				1815	30.25	0.101233	093.9551		

1830	30.5	0.09203	695.3356
1845	30.75	0.082827	696.578
1860	31	0.073624	697.6824
1875	31.25	0.064421	698.6487
1890	31.5	0.055218	699.477
1905	31.75	0.046015	700.1672
1920	32	0.036812	700.7194
1935	32.25	0.027609	701.1335
1950	32.5	0.018406	701.4096
1965	32.75	0.009203	701.5476
1980	33	0.003203	701.5476
1995	33.25	0	701.5476
2010	33.5	0	701.5476
2010	33.75	0	701.5476
2040	34	0	701.5476
2055	34.25	0	701.5476
2070	34.5	0	701.5476
2085	34.75	0	701.5476
2100	35	0	701.5476
2115	35.25	0	701.5476
2130	35.5	0	701.5476
2145	35.75	0	701.5476
2160	36	0	701.5476
2175	36.25	0	701.5476
2190	36.5	0	701.5476
2205	36.75	0	701.5476
2220	37	0	701.5476
2235	37.25	0	701.5476
2250	37.23	0	701.5476
2265	37.75	0	701.5476
2280	37.75	0	
			701.5476
2295	38.25	0	701.5476
2310	38.5	0	701.5476
2325	38.75	0	701.5476
2340	39	0	701.5476
2355	39.25	0	701.5476
2370	39.5	0	701.5476
2385	39.75	0	701.5476
2400	40	0	701.5476
2415	40.25	0	701.5476
2430	40.5	0	701.5476
2445	40.75	0	701.5476
2460	41	0	701.5476
2475	41.25	0	701.5476
2490	41.5	0	701.5476
2505	41.75	0	701.5476
2520	42	0	701.5476
2535	42.25	0	701.5476
2550	42.5	0	701.5476
2565	42.75	0	701.5476
2580	43	0	701.5476
2595	43.25	0	701.5476
2610	43.5	0	701.5476
2625	43.75	0	701.5476
2640	44	0	701.5476
2655	44.25	0	701.5476
	44.25	0	701.5476
2670			
2685	44.75	0	701.5476
2700	45	0	701.5476
2715	45.25	0	701.5476
2730	45.5	0	701.5476
2745	45.75	0	701.5476
2760	46	0	701.5476
2775	46.25	0	701.5476


2790	46.5	0	701.5476
2805	46.75	0	701.5476
2820	47	0	701.5476
2835	47.25	0	701.5476
2850	47.5	0	701.5476
2865	47.75	0	701.5476
2880	48	0	701.5476
2895	48.25	0	701.5476
2910	48.5	0	701.5476
2925	48.75	0	701.5476
2940	49	0	701.5476
2955	49.25	0	701.5476
2970	49.5	0	701.5476
2985	49.75	0	701.5476
3000	50	0	701.5476
3015	50.25	0	701.5476
3030	50.5	0	701.5476
3045	50.75	0	701.5476
3060	51	0	701.5476
3075	51.25	0	701.5476
3090	51.5	0	701.5476
3105	51.75	0	701.5476
3120	52	0	701.5476
3135	52.25	0	701.5476
3150	52.5	0	701.5476
3165	52.75	0	701.5476
3180	53	0	701.5476
3195	53.25	0	701.5476
3210	53.5	0	701.5476
3225	53.75	0	701.5476
3240	54	0	701.5476
3255	54.25	0	701.5476
3270	54.5	0	701.5476
3285	54.75	0	701.5476
3300	55	0	701.5476
3315	55.25	0	701.5476
3330	55.5	0	701.5476

Detention Volume - sizing - 1% AEP event - OPTION 2

	Pre-de	veloped			Post-de	eveloped		Detention tank
t [sec]	t [min]	Q [m ³ /s]	V [m³]	t [sec]	t [min]	Q [m ³ /s]	V [m³]	V [m³]
0	0	0	0	0	0	0	0	0
15	0.25	0.002159	0.032386	15	0.25	0.0099	0.148493	0.116
30	0.5	0.004318	0.097159	30	0.5	0.019799	0.445478	0.348
45	0.75	0.006477	0.194318	45	0.75	0.029699	0.890956	0.697
60	1	0.008636	0.323864	60	1	0.039598	1.484927	1.161
75	1.25	0.010795	0.485795	75	1.25	0.049498	2.22739	1.742
90	1.5	0.012955	0.680114	90	1.5	0.059397	3.118346	2.438
105	1.75	0.015114	0.906818	105	1.75	0.069297	4.157795	3.251
120	2	0.017273	1.165909	120	2	0.079196	5.345736	4.180
135	2.25		1.457386	135	2.25	0.089096	6.68217	5.225
150	2.5	0.021591	1.78125	150	2.5	0.098995	8.167096	6.386
165	2.75	0.02375	2.1375	165	2.75	0.108895	9.800516	7.663
180	3	0.025909		180	3	0.118794	11.58243	9.056
195	3.25	0.028068	2.947159	195	3.25	0.128694	13.51283	10.566
210	3.5	0.030227	3.400568	210	3.5	0.138593	15.59173	12.191
225	3.75	0.032386	3.886364	225	3.75	0.148493	17.81912	13.933
240	4		4.404545	240	4	0.158392	20.195	15.790
255	4.25	0.036705	4.955114	255	4.25	0.168292		17.764
270	4.5	0.038864	5.538068	270	4.5	0.178191	25.39225	19.854
285	4.75	0.041023	6.153409	285	4.75	0.188091	28.21361	22.060
300	5	0.043182	6.801136	300	5	0.19799	31.18346	24.382
315	5.25	0.045341	7.48125	315	5.25	0.20789	34.30181	26.821
330 345	5.5 5.75	0.0475 0.049659	8.19375 8.938636	330 345	5.5 5.75	0.217789 0.227689	37.56864 40.98398	29.375 32.045
345 360	6	0.049659	9.715909	360	5.75 6	0.227689	44.5478	34.832
375	6.25	0.051818	10.52557	375	6.25	0.237388	48.26012	37.735
390	6.5	0.056136	11.36761	390	6.5	0.257387	52.12092	40.753
405	6.75	0.058295	12.24205	405	6.75	0.257387	56.13023	43.888
420	7	0.058255	13.14886	420	7	0.277186	60.28802	47.139
435	7.25	0.062614	14.08807	435	7.25	0.287086	64.59431	50.506
450	7.5	0.064773	15.05966	450	7.5	0.296985	69.04909	53.989
465	7.75	0.066932	16.06364	465	7.75	0.306885	73.65236	57.589
480	8	0.069091	17.1	480	8	0.316784	78.40413	61.304
495	8.25	0.07125	18.16875	495	8.25	0.326684	83.30438	65.136
510	8.5	0.073409	19.26989	510	8.5	0.336583	88.35313	69.083
525	8.75	0.075568	20.40341	525	8.75	0.346483	93.55038	73.147
540	9	0.077727	21.56932	540	9	0.356382	98.89611	77.327
555	9.25	0.079886	22.76761	555	9.25	0.366282	104.3903	81.623
570	9.5	0.082045	23.9983	570	9.5	0.376181	110.0331	86.035
585	9.75	0.084205	25.26136	585	9.75	0.386081	115.8243	90.563
600	10	0.086364	26.55682	600	10	0.39598	121.764	95.207
615	10.25	0.088523	27.88466	615	10.25	0.40588	127.8522	99.968
630	10.5	0.090682	29.24489	630	10.5	0.415779	134.0889	104.844
645	10.75	0.092841	30.6375	645	10.75	0.425679	140.4741	109.837
660	11	0.095	32.0625	660	11	0.435578	147.0077	114.945
675	11.25	0.097159	33.51989	675	11.25	0.435578	153.5414	120.022
690	11.5	0.099318	35.00966	690	11.5	0.435578	160.0751	125.065
705	11.75	0.101477	36.53182	705	11.75	0.435578	166.6088	130.077
720	12	0.103636	38.08636	720	12	0.435578	173.1424	135.056
735	12.25	0.105795	39.6733	735	12.25	0.435578	179.6761	140.003
750 765	12.5 12.75	0.107955	41.29261 42.94432	750 765	12.5 12.75	0.435578 0.435578	186.2098 192.7435	144.917 149.799
765 780	12.75	0.110114 0.112273	44.62841	765 780	12.75	0.435578	192.7435 199.2772	149.799 154.649
780 795	13.25	0.112273	46.34489	780 795	13.25	0.435578	205.8108	154.649
795 810	13.25	0.114432	48.09375	810	13.25	0.435578	212.3445	164.251
825	13.75	0.116591	48.09375	825	13.75	0.435578	212.3445	169.003
840	14	0.11073	51.68864	840	14	0.435578	225.4119	173.723
855	14.25		53.53466	855	14.25	0.435578	231.9455	178.411
055	17.23	5.125000	33.33400	055	14.23	5.455576	231.3433	1,0.711

			Δt [sec]	15	
Q ₁₀₀ [m ³ /s]	0.285	Pre-developed	Q ₁₀₀ [m ³ /s]	0.436	Developed
Tc [min] Tc [sec]	33.00 1980 0.000144	peak flow	Tc [min] Tc [sec]	11.00 660 0.00066	peak flow
Tc [min] Tc [sec]			Tc [min] Tc [sec]	27.50 1650	end of storm
T [min] T [sec]	44 2640 0.000108	end simulation	T [min] T [sec]	44 2640 0.00044	end simulation

Detention volume [m³] 413

870	14.5	0.125227		870	14.5	0.435578		183.066
885	14.75	0.127386		885	14.75	0.435578		187.689
900	15	0.129545		900	15	0.435578		192.280
915	15.25		61.24261	915	15.25	0.435578		196.838
930 945	15.5 15.75	0.133864 0.136023		930 945	15.5 15.75	0.435578 0.435578		201.363 205.857
960	16.75	0.138182		945	15.75	0.435578		210.318
975	16.25	0.140341		975	16.25	0.435578	284.215	214.746
990	16.5	0.1425	71.60625	990	16.5	0.435578		219.142
1005	16.75	0.144659		1005	16.75	0.435578		223.506
1020	17	0.146818	75.97841	1020	17	0.435578	303.816	227.838
1035	17.25	0.148977	78.21307	1035	17.25	0.435578	310.3497	232.137
1050	17.5	0.151136		1050	17.5	0.435578		236.403
1065	17.75	0.153295		1065	17.75	0.435578	323.417	240.637
1080	18		85.11136	1080	18	0.435578		244.839
1095 1110	18.25 18.5	0.157614 0.159773	87.47557 89.87216	1095 1110	18.25 18.5	0.435578 0.435578		249.009 253.146
1110	18.75	0.159773		1110	18.75	0.435578		257.251
1140	19	0.164091	94.7625	1140	19	0.435578		261.323
1155	19.25	0.16625	97.25625	1155	19.25	0.435578		265.363
1170	19.5	0.168409	99.78239	1170	19.5	0.435578	369.1528	269.370
1185	19.75	0.170568	102.3409	1185	19.75	0.435578	375.6864	273.346
1200	20	0.172727	104.9318	1200	20	0.435578	382.2201	277.288
1215	20.25	0.174886		1215	20.25	0.435578		281.199
1230	20.5		110.2108	1230	20.5	0.435578		285.077
1245	20.75	0.179205		1245	20.75	0.435578		288.922
1260 1275	21 21.25	0.181364	118.3722	1260 1275	21 21.25	0.435578 0.435578		292.736 296.516
1275	21.25	0.185523		1275	21.25	0.435578		300.265
1305	21.75	0.187841	123.975	1305	21.75	0.435578		303.981
1320	22	0.19	126.825	1320	22	0.435578		307.665
1335	22.25	0.192159	129.7074	1335	22.25	0.435578	441.0232	311.316
1350	22.5	0.194318	132.6222	1350	22.5	0.435578	447.5569	314.935
1365	22.75	0.196477		1365	22.75	0.435578		318.521
1380	23	0.198636		1380	23	0.435578		322.075
1395	23.25	0.200795	141.5608	1395	23.25	0.435578		325.597
1410 1425	23.5 23.75	0.202955 0.205114		1410 1425	23.5 23.75	0.435578 0.435578		329.086 332.543
1440	23.75	0.205114		1440	23.75	0.435578	486.759	335.968
1455	24.25		153.9324	1455	24.25	0.435578		339.360
1470	24.5	0.211591		1470	24.5	0.435578		342.720
1485	24.75	0.21375	160.3125	1485	24.75	0.435578	506.36	346.047
1500	25	0.215909	163.5511	1500	25	0.435578	512.8937	349.343
1515	25.25	0.218068	166.8222	1515	25.25	0.435578	519.4273	352.605
1530	25.5	0.220227	170.1256	1530	25.5	0.435578	525.961	355.835
1545	25.75	0.222386		1545	25.75	0.435578		359.033
1560	26 26.25	0.224545 0.226705	176.8295 180.2301	1560 1575	26 26.25	0.435578 0.435578	539.0284 545.562	362.199
1575 1590	26.25	0.228864		1575	26.25	0.435578		365.332 368.433
1605	26.75		187.1284	1605	26.75	0.435578		371.501
1620	27	0.233182		1620	27	0.435578		374.537
1635	27.25	0.235341		1635	27.25	0.435578		377.541
1650	27.5	0.2375	197.7188	1650	27.5	0.435578	578.2304	380.512
1665	27.75	0.239659	201.3136	1665	27.75	0.428979	584.6651	383.351
1680	28	0.241818		1680	28	0.422379		386.060
1695	28.25	0.243977		1695	28.25	0.415779		388.637
1710	28.5	0.246136		1710	28.5	0.40918	603.3752	391.083
1725	28.75	0.248295	216.017	1725	28.75	0.40258	609.4139	393.397
1740 1755	29 29.25	0.250455 0.252614		1740 1755	29 29.25	0.39598 0.389381	615.3536 621.1943	395.580 397.631
1770	29.25	0.252614		1770	29.25	0.389381	626.936	399.551
1785	29.75		231.2386	1785	29.75	0.376181		401.340
1800	30	0.259091	235.125	1800	30	0.369582		402.997
1815	30.25	0.26125	239.0438	1815	30.25	0.362982	643.5672	404.523

1830	30.5	0.263409	242.9949	1830	30.5	0.356382	648.9129
1845	30.75	0.265568	246.9784	1845	30.75	0.349783	654.1597
1860	31	0.267727	250.9943	1860	31	0.343183	659.3074
1875	31.25	0.269886	255.0426	1875	31.25	0.336583	664.3562
1890	31.5	0.272045	259.1233	1890	31.5	0.329984	669.3059
1905	31.75	0.274205	263.2364	1905	31.75	0.323384	674.1567
1920	32	0.276364	267.3818	1920	32	0.316784	678.9085
1935	32.25	0.278523	271.5597	1935	32.25	0.310185	683.5612
1950	32.5	0.280682	275.7699	1950	32.5	0.303585	688.115
1965	32.75	0.282841	280.0125	1965	32.75	0.296985	692.5698
1980	33	0.285	284.2875	1980	33	0.290386	696.9256
				1995	33.25	0.283786	701.1824
				2010	33.5	0.277186	705.3402
				2025	33.75	0.270587	709.399
				2040	34	0.263987	713.3588
				2055	34.25	0.257387	717.2196
				2070	34.5	0.250788	720.9814
				2085	34.75	0.244188	724.6442
				2100	35	0.237588	728.208
				2115	35.25	0.230989	731.6729
				2130	35.5	0.224389	735.0387
				2145	35.75	0.217789	738.3055
				2160	36	0.21119	741.4734
				2175	36.25	0.20459	744.5422
				2190	36.5	0.19799	747.5121
				2205	36.75	0.191391	750.3829
				2220	37	0.184791	753.1548
				2235	37.25	0.178191	755.8277
				2250	37.5	0.171592	758.4015
				2265	37.75	0.164992	760.8764
				2280	38	0.158392	763.2523
				2295	38.25	0.151793	765.5292
				2310	38.5	0.145193	767.7071
				2325	38.75	0.138593	769.786
				2340	39	0.131993	771.7659
				2355	39.25	0.125394	773.6468
				2370	39.5	0.118794	775.4287
				2385	39.75	0.112194	777.1116
				2400	40	0.105595	778.6955
				2415	40.25	0.098995	780.1805
				2430	40.5	0.092395	
				2445	40.75	0.085796	782.8533
				2460	41	0.079196	
				2475	41.25		
				2490	41.5	0.065997	
				2505	41.75	0.059397	
				2520	42	0.052797	
				2535	42.25	0.046198	788.496
				2550	42.5	0.039598	789.09
				2565	42.75	0.032998	
				2580	43	0.026399	
				2595	43.25	0.019799	790.278
				2610	43.5	0.013199	
				2625	43.75	0.0066	790.5749
				2640	44	0	790.5749
				2655	44.25	0	790.5749
				2670	44.5	0	790.5749
				2685	44.75	0	790.5749
				2700	45	0	790.5749
				2715	45.25	0	790.5749
				2730	45.5	0	790.5749
				2745	45.75	0	790.5749
				2760	46	0	790.5749
				2775	46.25	0	790.5749

405.918

407.181

408.313

409.314

410.183

410.920

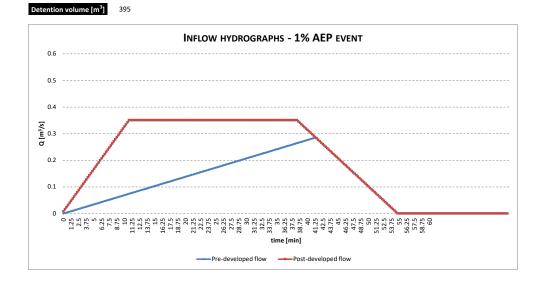
411.527

412.002

412.345

412.557

412.638


			700 5740
2790	46.5	0	790.5749
2805	46.75	0	790.5749
2820	47	0	790.5749
2835	47.25	0	790.5749
2850	47.5	0	790.5749
2865	47.75	0	790.5749
2880	48	0	790.5749
		•	
2895	48.25	0	790.5749
2910	48.5	0	790.5749
2925	48.75	0	790.5749
2940	49	0	790.5749
2955	49.25	0	790.5749
2970	49.5	0	790.5749
2985	49.75	0	790.5749
3000	50	0	790.5749
		-	
3015	50.25	0	790.5749
3030	50.5	0	790.5749
3045	50.75	0	790.5749
3060	51	0	790.5749
3075	51.25	0	790.5749
3090	51.5	0	790.5749
3105	51.75	0	790.5749
3120	52	0	790.5749
3135	52.25	0	790.5749
3150	52.5	0	790.5749
3165	52.75	0	790.5749
		•	
3180	53	0	790.5749
3195	53.25	0	790.5749
3210	53.5	0	790.5749
3225	53.75	0	790.5749
3240	54	0	790.5749
3255	54.25	0	790.5749
3270	54.5	0	790.5749
3285	54.75	0	790.5749
3300	55	0	790.5749
3315	55.25	0	790.5749
3330	55.5	0	790.5749
3345	55.75	0	790.5749
3360	56	0	790.5749
3375	56.25	0	790.5749
3390	56.5	0	790.5749
3405	56.75	0	790.5749
3420	57	0	790.5749
3435	57.25	0	790.5749
3450	57.5	0	790.5749
3465	57.75	0	790.5749
3480	58	0	790.5749
3495	58.25	0	790.5749
3510	58.5	0	790.5749
3525	58.75	0	790.5749
3540	59	0	790.5749
3555	59.25	0	790.5749
3570	59.5	0	790.5749
3585	59.75	0	790.5749
3600	60	0	790.5749
3615	60.25	0	790.5749
3630	60.5	0	790.5749
3645	60.75	0	790.5749
3660	61	0	790.5749
3675	61.25	0	790.5749
3690	61.5	0	790.5749
3705	61.75	0	790.5749
3720	62	0	790.5749
3735	62.25	0	790.5749
		-	

3750	62.5	0	790.5749
3765	62.75	0	790.5749
3780	63	0	790.5749
3795	63.25	0	790.5749
3810	63.5	0	790.5749
3825	63.75	0	790.5749
3840	64	0	790.5749
3855	64.25	0	790.5749
3870	64.5	0	790.5749
3885	64.75	0	790.5749
3900	65	0	790.5749
3915	65.25	0	790.5749
3930	65.5	0	790.5749
3945	65.75	0	790.5749
3960	66	0	790.5749
3975	66.25	0	790.5749
3990	66.5	0	790.5749
4005	66.75	0	790.5749
4020	67	0	790.5749
4035	67.25	0	790.5749
4050	67.5	0	790.5749
4065	67.75	0	790.5749
4080	68	0	790.5749
4095	68.25	0	790.5749
4110	68.5	0	790.5749
4125	68.75	0	790.5749
4140	69	0	790.5749
4155	69.25	0	790.5749
4170	69.5	0	790.5749
4185	69.75	0	790.5749
4200	70	0	790.5749
4215	70.25	0	790.5749
4230	70.5	0	790.5749
4245	70.75	0	790.5749
4260	71	0	790.5749
4275	71.25	0	790.5749
4290	71.5	0	790.5749
4305	71.75	0	790.5749
4320	72	0	790.5749
4335	72.25	0	790.5749
4350	72.5	0	790.5749
4365	72.75	0	790.5749
4380	73	0	790.5749
4395	73.25	0	790.5749
4410	73.5	0	790.5749
4425	73.75	0	790.5749
4440	74	0	790.5749
4455	74.25	0	790.5749
4470	74.5	0	790.5749
4485	74.75	0	790.5749
7-03	,4.,5	U	, 50.5745

Detention Volume - sizing - 1% AEP event - OPTION 3

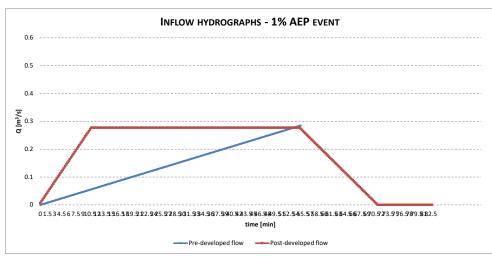
		Pre-developed				Post-developed 2			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	t [sec]			V [m³]	į	t [sec]			V [m ³]
30	0	0	0	0	_	0	0	0	0
45	15	0.25	0.001727	0.025909		15	0.25	0.007969	0.119529
Fig. 1.006609 0.259091 60	30	0.5	0.003455	0.077727		30	0.5	0.015937	0.358587
1.25	45	0.75	0.005182	0.155455		45	0.75	0.023906	0.717174
90	60	1	0.006909	0.259091		60	1	0.031874	1.19529
105	75	1.25	0.008636	0.388636		75	1.25	0.039843	1.792935
120	90	1.5	0.010364	0.544091		90	1.5	0.047812	2.51011
135 2.25 0.015545 1.165909 135 2.25 0.071717 5.378806 150 2.5 0.017273 1.425 150 2.5 0.079686 5.74097 165 2.75 0.019 1.71 165 2.75 0.087655 7.88916 180 3 0.0204182 2.720455 2.3777 195 3.25 0.103592 10.87714 210 3.5 0.024182 2.720455 210 3.5 0.119529 14.35048 225 3.75 0.025909 3.109091 225 3.75 0.119529 14.34348 240 4 0.027636 3.523636 240 4 0.124981 16.5595 255 4.25 0.033491 4.350455 270 4.5 0.134945 2.70 4.5 0.134945 2.70 4.5 0.143433 20.4394 2.85 4.75 0.154942 2.85 4.75 0.154942 2.71052 3.5 0.0503454 5.40909 <	105	1.75	0.012091	0.725455		105	1.75	0.05578	3.346813
150 2.5 0.017273 1.425 150 2.5 0.079686 6.574097 165 2.75 0.019 1.71 165 2.75 0.087655 7.888916 180 3 0.020727 2.020909 180 3 0.095623 9.32354 195 3.25 0.022455 2.357727 195 3.25 0.103592 10.87714 210 3.5 0.02482 2.720455 210 3.5 0.11156 12.55055 225 3.75 0.025909 3.109091 225 3.75 0.11156 12.55052 255 4.25 0.023643 3.964091 255 4.25 0.13466 18.28794 270 4.5 0.031091 4.430455 270 4.5 0.134343 20.43946 285 4.75 0.034434 5.440909 300 5 0.159372 25.1011 315 5.25 0.0384 6.555 330 5.5 0.175309 30.24084	120	2	0.013818	0.932727		120	2	0.063749	4.303045
165 2.75 0.019 1.71 165 2.75 0.087655 7.888916 180 3 0.020727 2.020909 180 3 0.095623 9.323264 195 3.25 0.0224182 2.720455 210 3.5 0.11156 12.55055 225 3.75 0.025909 3.109091 225 3.75 0.119529 14.34348 240 4 0.027636 3.523636 240 4 0.127498 16.25595 255 4.25 0.031091 4.480455 270 4.5 0.134435 20.43946 285 4.75 0.032818 4.922727 285 4.75 0.154937 27.1052 285 4.75 0.034945 5.440909 300 5 0.159372 25.1011 315 5.25 0.036273 5.985 315 5.25 0.167341 27.61121 330 5.5 0.038 6.555 3330 5.5 0.138278 2.29009	135	2.25	0.015545	1.165909		135	2.25	0.071717	5.378806
180 3 0.020727 2.020909 180 3 0.095623 9.323264 195 3.25 0.022455 2.357727 195 3.25 0.103592 10.87714 210 3.5 0.02482 2.720455 210 3.5 0.119529 14.34348 240 4 0.027636 3.523636 240 4 0.127498 16.25595 255 4.25 0.029364 3.964091 255 4.25 0.135466 18.28794 270 4.5 0.031091 4.430455 270 4.5 0.134435 2.04394 285 4.75 0.032818 4.922727 285 4.75 0.151403 22.71052 300 5 0.034545 5.440909 300 5 0.159372 25.1011 315 5.25 0.0386 6.555 330 5.5 0.175309 30.24084 345 5.75 0.0338 6.555 330 5.5 0.175309 30.24084	150	2.5	0.017273	1.425		150	2.5	0.079686	6.574097
195								0.087655	7.888916
210 3.5 0.024182 2.720455 210 3.5 0.11156 12.55055 225 3.75 0.025909 3.109091 225 3.75 0.119529 14.34348 240 4 0.027636 3.523636 240 4 0.127498 16.25595 255 4.25 0.029364 3.964091 255 4.25 0.134345 20.43946 285 4.75 0.03191 4.430455 270 4.5 0.143435 20.43946 285 4.75 0.03273 5.898 315 5.25 0.167341 27.61121 315 5.25 0.036273 5.898 315 5.25 0.167341 27.61121 330 5.5 0.038 6.555 330 5.5 0.163272 25.1011 345 5.75 0.0388 6.555 330 5.5 0.183278 32.99001 345 5.75 0.03484 2.40455 375 6.25 0.191246 35.88871									
225 3.75 0.025909 3.109091 225 3.75 0.119529 14.34484 240 4 0.027636 3.523636 240 4 0.127498 16.25995 255 4.25 0.029364 3.964091 255 4.25 0.134365 20.43946 270 4.5 0.031091 4.430455 270 4.5 0.143435 20.43946 285 4.75 0.032818 4.922727 285 4.75 0.159372 25.1011 315 5.25 0.034545 5.440909 300 5 0.159372 25.1011 315 5.25 0.036273 5.985 315 5.25 0.167341 27.61121 330 5.5 0.039727 7.150909 345 5.75 0.183278 32.99001 360 6 0.041495 7.772727 360 6 0.191246 35.85871 375 6.25 0.044909 9.094091 390 6.5 0.207184 41									
240 4 0.027636 3.523636 240 4 0.127498 16.25595 255 4.25 0.029364 3.964091 255 4.25 0.134366 18.28794 270 4.5 0.031091 4.430455 270 4.5 0.1543435 20.43946 285 4.75 0.032818 4.922727 285 4.75 0.151403 22.71052 300 5 0.034545 5.440909 300 5 0.159372 25.1011 315 5.25 0.036273 5.985 315 5.25 0.167341 27.61121 330 5.5 0.038727 7.150909 345 5.75 0.183278 32.99001 360 6 0.041455 7.7772727 360 6 0.191246 35.885871 375 6.25 0.044909 9.094091 390 6.5 0.027184 41.95469 405 6.75 0.046636 9.793636 405 6.75 0.215152 4									
255 4.25 0.029364 3.964091 255 4.25 0.135466 18.28794 270 4.5 0.031091 4.430455 270 4.5 0.143435 20.43946 285 4.75 0.032818 4.922727 285 4.75 0.151403 22.71052 300 5 0.034545 5.440909 300 5 0.159372 25.1011 315 5.25 0.036273 5.985 315 5.25 0.167309 30.24084 345 5.75 0.038777 7.150909 345 5.75 0.183278 32.99001 360 6 0.041455 7.772727 360 6 0.191246 35.88871 375 6.25 0.043182 8.420455 375 6.25 0.199215 38.84693 390 6.5 0.044909 9.094091 390 6.5 0.207184 41.95469 405 6.75 0.048364 10.51909 420 7 0.223121 4			0.025909	3.109091		225		0.119529	14.34348
270 4.5 0.031091 4.430455 270 4.5 0.143435 20.43946 285 4.75 0.032818 4.927277 285 4.75 0.151403 22.71052 300 5 0.034545 5.440909 300 5 0.15372 25.1011 315 5.25 0.036273 5.985 315 5.25 0.167341 27.61121 330 5.5 0.038727 7.150909 345 5.75 0.183278 32.99001 360 6 0.041455 7.772727 360 6 0.191246 35.85871 375 6.25 0.043182 8.420455 375 6.25 0.199215 38.84693 390 6.5 0.044699 9.094091 390 6.5 0.207184 41.95469 405 6.75 0.046636 9.793636 405 6.75 0.215152 45.18197 420 7 0.048364 10.51909 420 7 0.223108 51.995									
285 4.75 0.032818 4.922727 285 4.75 0.151403 22.71052 300 5 0.034545 5.440909 300 5 0.159372 25.1011 315 5.25 0.036273 5.985 315 5.25 0.167341 27.61121 330 5.5 0.039727 7.150909 345 5.75 0.183278 32.99001 360 6 0.041455 7.772727 360 6 0.191246 35.85871 375 6.25 0.0443182 8.420455 375 6.25 0.199215 38.84693 390 6.5 0.044909 9.094091 390 6.5 0.207184 4195469 405 6.75 0.046636 9.793636 405 6.75 0.215152 45.18197 420 7 0.048364 10.51909 420 7 0.223121 48.52874 7.5 0.051818 12.04773 450 7.5 0.239058 55.81 <									
300 5 0.034545 5.440909 300 5 0.159372 25.1011 315 5.25 0.036273 5.985 315 5.25 0.167341 27.61121 330 5.5 0.038 6.555 330 5.5 0.175309 30.24084 345 5.75 0.039727 7.150909 345 5.75 0.183278 32.99001 360 6 0.041455 7.772727 360 6 0.191246 35.85871 375 6.25 0.043182 8.204555 375 6.25 0.199215 38.84693 390 6.5 0.046036 9.094091 390 6.5 0.027184 4195469 405 6.75 0.046364 10.51909 420 7 0.223121 48.52849 435 7.25 0.051818 12.04773 450 7.5 0.239058 55.581 465 7.75 0.053545 12.85091 465 7.75 0.247027 59.2864 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
315 5.25 0.036273 5.985 315 5.25 0.167341 27.61121 330 5.5 0.038727 7.150909 345 5.75 0.183278 32.99001 360 6 0.041455 7.772727 360 6 0.191246 35.88871 375 6.25 0.043182 8.420455 375 6.25 0.199215 38.84693 390 6.5 0.044909 9.094091 390 6.5 0.207184 41.95469 405 6.75 0.046364 10.51909 420 7 0.223121 48.52879 435 7.25 0.050091 11.27045 435 7.25 0.231089 51.99513 450 7.5 0.053181 12.04773 450 7.5 0.231089 51.99513 450 7.5 0.053081 12.85091 465 7.75 0.247027 59.2864 480 8 0.055273 13.68 480 8 0.2524995 63.11									
330 5.5 0.038 6.555 330 5.5 0.175309 30.24084 345 5.75 0.039727 7.150909 345 5.75 0.183278 32.99001 360 6 0.041455 7.772727 360 6 0.191246 35.85871 375 6.25 0.043182 8.420455 375 6.25 0.199215 38.84693 390 6.5 0.044909 9.094091 390 6.5 0.207184 41.95469 405 6.75 0.048364 10.51909 420 7 0.223121 48.52879 420 7 0.048364 10.51909 420 7 0.223108 51.99513 450 7.5 0.050091 11.27045 435 7.25 0.231088 51.99513 450 7.5 0.051818 12.04773 450 7.5 0.239058 55.81 480 8 0.055273 13.68 480 8 0.254995 63.11133									
345 5.75 0.039727 7.150909 345 5.75 0.183278 32.99001 360 6 0.041455 7.772727 360 6 0.191246 35.85871 375 6.25 0.0443182 8.420455 375 6.25 0.199215 38.84693 390 6.5 0.04409 9.094091 390 6.5 0.207184 41.95469 405 6.75 0.046636 9.793636 405 6.75 0.213122 48.18197 420 7 0.048364 10.51909 420 7 0.223121 48.52879 435 7.25 0.051818 12.04773 450 7.5 0.239058 55.581 465 7.75 0.053845 12.85091 465 7.75 0.247027 59.2864 480 8 0.055273 13.68 480 8 0.254995 63.1113 495 8.25 0.058727 14.535 495 8.25 0.262964 67.05579									
360 6 0.041455 7.772727 360 6 0.191246 35.85871 375 6.25 0.043182 8.420455 375 6.25 0.199215 38.84693 390 6.5 0.0446909 9.094091 390 6.5 0.027184 41.95469 405 6.75 0.046636 9.793636 405 6.75 0.215152 45.18197 420 7 0.048364 10.51909 420 7 0.231121 48.52879 435 7.25 0.05091 11.27045 435 7.25 0.231089 51.99513 450 7.5 0.053451 12.85091 465 7.75 0.239058 55.581 480 8 0.055273 13.68 480 8 0.254995 63.11133 495 8.25 0.057 14.535 495 8.25 0.62964 67.05579 510 8.5 0.057827 15.41591 510 8.5 0.279932 71.11797 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
375 6.25 0.043182 8.420455 375 6.25 0.199215 38.84693 390 6.5 0.044909 9.994091 390 6.5 0.207184 41.95469 405 6.75 0.048364 10.51909 420 7 0.223121 48.52879 435 7.25 0.050091 11.27045 435 7.25 0.231089 51.99513 450 7.5 0.051818 12.04773 450 7.5 0.231089 51.99513 465 7.75 0.0535845 12.85091 465 7.75 0.247027 59.2864 480 8 0.055273 13.68 480 8 0.254995 63.11133 495 8.25 0.0577 14.535 495 8.25 0.262964 67.05579 510 8.5 0.058727 15.41591 510 8.5 0.270932 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901									
390 6.5 0.044909 9.094091 390 6.5 0.207184 41.95469 405 6.75 0.046636 9.793636 405 6.75 0.215152 45.18197 420 7 0.048364 10.51909 420 7 0.231121 48.52879 435 7.25 0.050091 11.27045 435 7.25 0.231089 51.99513 450 7.5 0.051818 12.04773 450 7.5 0.239058 55.581 465 7.75 0.053545 12.85091 465 7.75 0.247027 59.2864 480 8 0.055273 13.68 480 8 0.254995 63.11133 495 8.25 0.058727 14.535 495 8.25 0.262964 67.05579 510 8.5 0.058727 15.41591 510 8.5 0.279927 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901 75.3									
405 6.75 0.046636 9.793636 405 6.75 0.215152 45.18197 420 7 0.048364 10.51909 420 7 0.223121 48.52879 435 7.25 0.050091 11.27045 435 7.25 0.231089 51.99513 450 7.5 0.051818 12.04773 450 7.5 0.239058 55.581 465 7.75 0.053545 12.85091 465 7.75 0.247027 59.2864 480 8 0.055273 13.68 480 8 0.254995 63.11133 495 8.25 0.058727 15.41591 510 8.5 0.270932 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901 75.30329 540 9 0.062182 17.25545 540 9 0.28687 79.60633 555 9.25 0.063909 18.21409 555 9.25 0.302807 88.570									
420 7 0.048364 10.51909 420 7 0.223121 48.52879 435 7.25 0.050091 11.27045 435 7.25 0.231089 51.99513 450 7.5 0.053845 12.85091 465 7.75 0.247027 59.2864 480 8 0.055273 13.68 480 8 0.254995 63.11133 495 8.25 0.057 14.535 495 8.25 0.626946 67.05579 510 8.5 0.058727 15.41591 510 8.5 0.270932 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901 75.30329 540 9 0.062182 17.25545 540 9 0.28687 79.60633 555 9.25 0.063909 18.21409 555 9.25 0.294838 84.02891 570 9.5 0.062364 20.20909 585 9.75 0.310775 93.23264 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
435 7.25 0.050091 11.27045 435 7.25 0.231089 51.99513 450 7.5 0.051818 12.04773 450 7.5 0.231089 51.99513 465 7.75 0.053545 12.85091 465 7.75 0.247027 59.2864 480 8 0.055273 13.68 480 8 0.254995 63.11133 495 8.25 0.0577 14.535 495 8.25 0.262964 67.05579 510 8.5 0.058727 15.41591 510 8.5 0.270932 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901 75.30329 540 9 0.062182 17.25545 540 9 0.28687 79.60633 555 9.25 0.063909 18.21409 555 9.25 0.294838 84.02891 570 9.5 0.066963 19.19864 570 9.5 0.302807 88.57									
450 7.5 0.051818 12.04773 450 7.5 0.239058 55.581 465 7.75 0.053245 12.85091 465 7.75 0.247027 59.2864 480 8 0.055273 13.68 480 8 0.254995 63.11133 495 8.25 0.058727 15.41591 510 8.5 0.270932 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901 75.30329 540 9 0.062182 17.25545 540 9 0.28687 79.60633 555 9.25 0.063909 18.21409 555 9.25 0.294838 84.02891 570 9.5 0.065636 19.19864 570 9.5 0.302807 88.57101 585 9.75 0.0707364 20.20909 585 9.75 0.310775 93.23264 600 10 0.069091 21.24545 600 10 0.318744 98.0<									
465 7.75 0.053545 12.85091 465 7.75 0.247027 59.2864 480 8 0.055273 13.68 480 8 0.254995 63.11133 495 8.25 0.057 14.535 495 8.25 0.262946 67.05579 510 8.5 0.058727 15.41591 510 8.5 0.278920 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901 75.30329 540 9 0.062182 17.25545 540 9 0.28687 79.60633 555 9.25 0.063099 18.21409 555 9.25 0.29483 840.2891 570 9.5 0.065636 19.19864 570 9.5 0.302807 88.57101 585 9.75 0.067364 20.20909 585 9.75 0.31077 93.23264 600 10 0.069091 21.24545 600 10 0.318744 98.0138 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
480 8 0.055273 13.68 480 8 0.254995 63.11133 495 8.25 0.0577 14.535 495 8.25 0.262964 67.05579 510 8.5 0.058727 15.41591 510 8.5 0.270932 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901 75.30329 540 9 0.028687 79.60633 555 9.25 0.294838 84.02891 570 9.5 0.063636 19.19864 570 9.5 0.02807 88.57101 585 9.75 0.067364 20.20909 585 9.75 0.310775 93.23264 600 10 0.069091 21.24545 600 10 0.318744 98.0138 615 10.25 0.070818 22.30773 615 10.25 0.326713 102.9145 630 10.5 0.074273 24.51 645 10.75 0.34265 11.30									
495 8.25 0.057 14.535 495 8.25 0.262964 67.05579 510 8.5 0.058727 15.41591 510 8.5 0.270932 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901 75.30329 540 9 0.062182 17.25545 540 9 0.28687 79.60633 555 9.25 0.063909 18.21409 555 9.25 0.294838 84.02891 570 9.5 0.065636 19.19864 570 9.5 0.302807 88.57101 585 9.75 0.067364 20.20909 585 9.75 0.310775 93.23264 600 10 0.069091 21.24545 600 10 0.318744 98.0138 615 10.25 0.070818 22.30773 615 10.25 0.326713 102.9145 630 10.5 0.0724273 24.51 645 10.75 0.34265 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
510 8.5 0.058727 15.41591 510 8.5 0.270932 71.11977 525 8.75 0.060455 16.32273 525 8.75 0.278901 75.30329 540 9 0.062182 17.25545 540 9 0.28687 79.60633 555 9.25 0.063909 18.21409 555 9.25 0.294838 8402891 570 9.5 0.065636 19.19864 570 9.5 0.302807 88.57101 585 9.75 0.070784 20.20909 585 9.75 0.310775 93.23264 600 10 0.069091 21.24545 600 10 0.318744 80.138 615 10.25 0.072818 23.30773 615 10.25 0.326713 102.9145 630 10.5 0.072473 24.51 645 10.75 0.34265 113.0745 660 11 0.076 25.65 660 11 0.350618 183.337									
525 8.75 0.060455 16.32273 525 8.75 0.278901 75.30329 540 9 0.062182 17.25545 540 9 0.28687 79.6063 555 9.25 0.063909 18.21409 555 9.25 0.294838 84.02891 570 9.5 0.065636 19.19864 570 9.5 0.302807 88.57101 585 9.75 0.067364 20.20909 585 9.75 0.310775 93.23264 600 10 0.0689091 21.24545 600 10 0.318744 98.0138 615 10.25 0.070818 22.30773 615 10.25 0.32671 302.9145 630 10.5 0.072545 23.39591 630 10.5 0.334681 107.9347 645 10.75 0.074273 24.51 645 10.75 0.34061 110.9350618 118.3337 675 11.25 0.077772 26.81591 675 11.25									
540 9 0.062182 17.25545 540 9 0.28687 79.60633 555 9.25 0.063909 18.21409 555 9.25 0.294838 84.02881 570 9.5 0.065636 19.19864 570 9.5 0.302807 88.57101 585 9.75 0.067364 20.20909 585 9.75 0.310775 93.23264 600 10 0.069091 21.24545 600 10 0.318744 98.0138 615 10.25 0.070818 22.30773 615 10.25 0.326713 102.9145 630 10.5 0.074273 24.51 645 10.75 0.34265 113.0745 660 11 0.076 25.65 660 11 0.350618 123.9745 675 11.25 0.077772 26.81591 675 11.25 0.350618 123.893 690 11.5 0.079455 28.00773 690 11.5 0.350618 12									
555 9.25 0.063909 18.21409 555 9.25 0.294838 84.02891 570 9.5 0.065636 19.19864 570 9.5 0.302807 88.57101 585 9.75 0.067364 20.20909 585 9.75 0.310775 93.23264 600 10 0.069091 21.24545 600 10 0.318744 98.0138 615 10.25 0.070818 22.30773 615 10.25 0.326713 102.9145 630 10.5 0.072245 23.39591 630 10.5 0.334681 107.9347 645 10.75 0.074273 24.51 645 10.75 0.34265 113.0745 660 11 0.0760 25.65 660 11 0.350618 123.593 675 11.25 0.077727 26.81591 675 11.25 0.350618 128.8523 705 11.75 0.081182 29.22545 705 11.75 0.350618									
570 9.5 0.065636 19.19864 570 9.5 0.302807 88.57101 585 9.75 0.067364 20.20909 585 9.75 0.310775 93.23264 600 10 0.069091 21.24545 600 10 0.318744 98.0138 615 10.25 0.070818 22.30773 615 10.25 0.326713 102.9145 630 10.5 0.072545 23.39591 630 10.5 0.334681 10.79347 645 10.75 0.074273 24.51 645 10.75 0.34265 113.0745 660 11 0.350618 118.3337 660 11 0.350618 118.3337 675 11.25 0.077727 26.81591 675 11.25 0.350618 123.593 690 11.5 0.079455 28.00773 690 11.5 0.350618 123.8593 705 11.75 0.081182 29.22545 705 11.75 0.350618 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
585 9.75 0.067364 20.20909 585 9.75 0.310775 93.23264 600 10 0.069091 21.24545 600 10 0.318744 98.0138 615 10.25 0.070818 22.30773 615 10.25 0.326713 102.9145 630 10.5 0.072545 23.39591 630 10.5 0.334681 107.9347 645 10.75 0.074273 24.51 645 10.75 0.34265 113.0745 660 11 0.076 25.65 660 11 0.350618 18.3337 675 11.25 0.079455 28.00773 690 11.5 0.350618 123.593 705 11.75 0.081182 29.22545 705 11.75 0.350618 134.1116 720 12 0.082909 30.46909 720 12 0.350618 139.3708 735 12.5 0.086364 33.03409 750 12.5 0.350618									
600 10 0.069091 21.24545 600 10 0.318744 98.0138 615 10.25 0.070818 22.30773 615 10.25 0.326713 102.9145 630 10.5 0.072545 23.39591 630 10.5 0.334681 107.9347 645 10.75 0.074273 24.51 645 10.75 0.34265 113.0745 660 11 0.076 25.65 660 11 0.350618 123.393 690 11.5 0.077727 26.81591 675 11.25 0.350618 123.593 705 11.75 0.081182 29.22545 705 11.75 0.350618 128.8523 735 12.25 0.084036 31.73864 735 12.25 0.350618 139.3708 750 12.5 0.0860364 33.03409 750 12.5 0.350618 144.6301 750 12.5 0.088091 34.35545 765 12.75 0.350618									
615 10.25 0.070818 22.30773 615 10.25 0.326713 102.9145 630 10.5 0.072545 23.39591 630 10.5 0.334681 107.9347 645 10.75 0.074273 24.51 645 10.75 0.34265 113.0745 660 11 0.0766 25.65 660 11 0.350618 118.3337 675 11.25 0.077727 26.81591 675 11.25 0.350618 123.593 690 11.5 0.079455 28.00773 690 11.5 0.350618 128.8523 705 11.75 0.081182 29.22545 705 11.75 0.350618 138.1116 720 12 0.082909 30.46909 720 12 0.350618 139.3708 735 12.25 0.086364 33.03409 750 12.5 0.350618 149.8894 765 12.75 0.088091 34.35545 765 12.75 0.350618 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
645 10.75 0.074273 24.51 645 10.75 0.34265 113.0745 660 11 0.076 25.65 660 11 0.350618 118.3337 675 11.25 0.077727 26.81591 675 11.25 0.350618 123.593 690 11.5 0.079455 28.00773 690 11.5 0.350618 128.8523 705 11.75 0.081182 29.22545 705 11.75 0.350618 134.1116 720 12 0.082909 30.46909 720 12 0.350618 139.3708 750 12.5 0.084636 31.73864 735 12.25 0.350618 144.6301 750 12.5 0.088063 33.03409 750 12.5 0.350618 149.8894 765 12.75 0.088091 34.35545 765 12.75 0.350618 155.487 780 13 0.089818 35.70273 780 13 0.350618									
660 11 0.076 25.65 660 11 0.350618 118.3337 675 11.25 0.077727 26.81591 675 11.25 0.350618 123.993 690 11.5 0.077455 28.00773 690 11.5 0.350618 128.8523 705 11.75 0.081182 29.22545 705 11.75 0.350618 14.1116 720 12 0.082909 30.46909 720 12 0.350618 134.1116 750 12.5 0.084636 31.73864 735 12.25 0.350618 144.6301 750 12.5 0.086064 33.03409 750 12.5 0.350618 149.8894 765 12.75 0.088091 34.35545 765 12.75 0.350618 155.1487 780 13 0.08918 35.70273 780 13 0.350618 165.6672 810 13.5 0.093273 38.475 810 13.5 0.350618	630	10.5	0.072545	23.39591		630	10.5	0.334681	107.9347
675 11.25 0.077727 26.81591 675 11.25 0.350618 123.593 690 11.5 0.079455 28.00773 690 11.5 0.350618 128.8523 705 11.75 0.081182 29.22545 705 11.75 0.350618 138.3708 720 12 0.082909 30.46909 720 12 0.350618 193.9708 735 12.25 0.084636 31.73864 735 12.25 0.350618 144.6301 765 12.75 0.086364 33.03409 750 12.5 0.350618 149.8894 765 12.75 0.088091 34.35545 765 12.75 0.350618 155.1487 780 13 0.08918 35.70273 780 13 0.350618 165.6672 810 13.5 0.091545 37.07591 795 13.25 0.350618 165.6672 810 13.5 0.093273 38.475 810 13.5 0.3506	645	10.75	0.074273	24.51		645	10.75	0.34265	113.0745
690 11.5 0.079455 28.00773 690 11.5 0.350618 128.8523 705 11.75 0.081182 29.22545 705 11.75 0.350618 134.1116 720 12 0.082909 30.46909 720 12 0.350618 139.3708 735 12.25 0.0864636 31.73864 735 12.25 0.350618 144.6301 750 12.5 0.086364 33.03409 750 12.5 0.350618 149.8894 765 12.75 0.088081 35.70273 780 13 0.350618 155.1487 780 13 0.089818 37.07591 795 13.25 0.350618 160.408 795 13.25 0.091545 37.07591 795 13.25 0.350618 167.6672 810 13.5 0.093273 38.475 810 13.5 0.350618 170.9265 825 13.75 0.350618 176.1858 840 14	660	11	0.076	25.65		660	11	0.350618	118.3337
705 11.75 0.081182 29.22545 705 11.75 0.350618 134.1116 720 12 0.082909 30.46909 720 12 0.350618 139.3708 735 12.25 0.086436 31.73864 735 12.25 0.350618 144.6301 750 12.5 0.086643 33.03409 750 12.5 0.350618 149.8894 765 12.75 0.088091 34.35545 765 12.75 0.350618 155.1487 780 13 0.089818 35.70273 780 13 0.350618 160.408 795 13.25 0.091545 37.07591 795 13.25 0.350618 165.6672 810 13.5 0.093273 38.475 810 13.5 0.350618 170.9265 825 13.75 0.095 39.9 825 13.75 0.350618 181.4451 840 14 0.096727 41.35091 840 14 0.350618	675	11.25	0.077727	26.81591		675	11.25	0.350618	123.593
720 12 0.082909 30.46909 720 12 0.350618 139.3708 735 12.25 0.084636 31.73864 735 12.25 0.350618 144.6301 750 12.5 0.086364 33.03409 750 12.5 0.350618 149.8984 765 12.75 0.088091 34.35545 765 12.75 0.350618 155.1487 780 13 0.089818 35.70273 780 13 0.350618 160.408 795 13.25 0.091545 37.07591 795 13.25 0.350618 165.6672 810 13.5 0.093273 38.475 810 13.5 0.350618 170.9265 825 13.75 0.095 39.9 825 13.75 0.350618 181.451 840 14 0.096727 41.35091 840 14 0.350618 181.4451	690	11.5	0.079455	28.00773		690	11.5	0.350618	128.8523
735 12.25 0.084636 31.73864 735 12.25 0.350618 144.6301 750 12.5 0.086364 33.03409 750 12.5 0.350618 149.8894 765 12.75 0.088091 34.35545 765 12.75 0.350618 155.1487 780 13 0.089818 35.70273 780 13 0.350618 160.408 795 13.25 0.091545 37.07591 795 13.25 0.350618 160.408 810 13.5 0.093273 38.475 810 13.5 0.350618 170.9265 825 13.75 0.095 39.9 825 13.75 0.350618 176.1858 840 14 0.096727 41.35091 840 14 0.350618 181.4451	705	11.75	0.081182	29.22545		705	11.75	0.350618	134.1116
750 12.5 0.086364 33.03409 750 12.5 0.350618 149.8894 765 12.75 0.088091 34.35545 765 12.75 0.350618 155.1487 780 13 0.089818 35.70273 780 13 0.350618 160.408 795 13.25 0.091545 37.07591 795 13.25 0.350618 160.408 810 13.5 0.093273 38.475 810 13.5 0.350618 170.9265 825 13.75 0.095 39.9 825 13.75 0.350618 176.1858 840 14 0.096727 41.35091 840 14 0.350618 181.4451	720	12	0.082909	30.46909		720	12	0.350618	139.3708
765 12.75 0.088091 34.35545 765 12.75 0.350618 155.1487 780 13 0.089818 35.70273 780 13 0.350618 160.408 795 13.25 0.091545 37.07591 795 13.25 0.350618 165.6672 810 13.5 0.093273 38.475 810 13.5 0.350618 170.9265 825 13.75 0.095 39.9 825 13.75 0.350618 170.1858 840 14 0.096727 41.35091 840 14 0.350618 181.4451	735	12.25	0.084636	31.73864		735	12.25	0.350618	144.6301
780 13 0.089818 35.70273 780 13 0.350618 160.408 795 13.25 0.091545 37.07591 795 13.25 0.350618 165.6672 810 13.5 0.093273 38.475 810 13.5 0.350618 170.9265 825 13.75 0.095 39.9 825 13.75 0.350618 176.1858 840 14 0.096727 41.35091 840 14 0.350618 181.4451									149.8894
795 13.25 0.091545 37.07591 795 13.25 0.350618 165.6672 810 13.5 0.093273 38.475 810 13.5 0.350618 170.9265 825 13.75 0.095 39.9 825 13.75 0.350618 176.1858 840 14 0.096727 41.35091 840 14 0.350618 181.4451		12.75	0.088091	34.35545		765	12.75	0.350618	155.1487
810 13.5 0.093273 38.475 810 13.5 0.350618 170.9265 825 13.75 0.095 39.9 825 13.75 0.350618 176.1858 840 14 0.096727 41.35091 840 14 0.350618 181.4451									
825 13.75 0.095 39.9 825 13.75 0.350618 176.1858 840 14 0.096727 41.35091 840 14 0.350618 181.4451									
840 14 0.096727 41.35091 840 14 0.350618 181.4451									
	825	13.75	0.095	39.9		825	13.75	0.350618	176.1858
855 14.25 0.098455 42.82773 855 14.25 0.350618 186.7043			0.096727	41.35091			14	0.350618	181.4451
	855	14.25	0.098455	42.82773		855	14.25	0.350618	186.7043

			Δt [sec]	15			
Q ₁₀₀ [m ³ /s]	0.285	Pre-developed	Q ₁₀₀ [m ³ /s]	0.351	Developed		
Tc [min]	41.25	peak flow	Tc [min]	11.00	peak flow		
Tc [sec]	2475		Tc [sec]	660			
0.000115			0.000531				
Tc [min]			Tc [min]	38.50	end of storm		
Tc [sec]			Tc [sec]	2310			
T [min]	55	end simulation	T [min]	55	end simulation		
T [sec]	3300		T [sec]	3300			
	8.64E-05			0.000354	1		

870	14.5	0.100182	44.33045	870	14.5	0.350618	191.9636	147.633
885	14.75		45.85909	885	14.75		197.2229	151.364
900	15		47.41364	900	15		202.4822	155.069
915	15.25		48.99409	915	15.25		207.7415	158.747
930	15.5		50.60045	930	15.5		213.0007	162.400
945	15.75		52.23273	945	15.75	0.350618	218.26	166.027
960	16		53.89091	960	16		223.5193	169.628
975	16.25	0.112273	55.575	975	16.25	0.350618		173.204
990	16.5	0.112273	57.285	990	16.5		234.0378	176.753
1005	16.75		59.02091	1005	16.75		239.2971	180.276
1020	17		60.78273	1003	17		244.5564	183.774
1035	17.25		62.57045	1035	17.25	0.350618		187.245
1050	17.5		64.38409	1050	17.5	0.350618		190.691
1065	17.75		66.22364	1065	17.75		260.3342	194.111
1080	18	0.124364		1080	18		265.5935	197.504
1095	18.25	0.124304		1095	18.25		270.8528	200.872
1110	18.5		71.89773	1110	18.5		276.1121	204.214
1125	18.75		73.84091	1125	18.75		281.3713	207.530
1140	19	0.123343	75.81	1140	19		286.6306	210.821
1155	19.25	0.131273	77.805	1155	19.25		291.8899	214.085
1170	19.5		79.82591	1170	19.5		297.1492	217.323
1175	19.75		81.87273	1170	19.75		302.4084	220.536
1200	20		83.94545		20	0.350618		220.536
1215	20.25		86.04409	1200 1215	20.25	0.350618	312.927	226.883
1215	20.25		88.16864	1215	20.25		318.1863	230.018
	20.5				20.5			
1245				1245			323.4456	233.126
1260	21		92.49545	1260	21		328.7048	236.209
1275	21.25		94.69773	1275	21.25		333.9641	239.266
1290	21.5		96.92591	1290	21.5		339.2234	242.297
1305	21.75	0.150273	99.18	1305	21.75	0.350618		245.303
1320	22	0.152	101.46	1320	22		349.7419	248.282
1335 1350	22.25 22.5		103.7659	1335	22.25		355.0012	251.235
1365	22.75		106.0977 108.4555	1350	22.5 22.75		360.2605 365.5198	254.163 257.064
				1365				
1380 1395	23 23.25		110.8391	1380	23 23.25	0.350618	370.779 376.0383	259.940
1410	23.25		113.2486 115.6841	1395 1410	23.25	0.350618		262.790 265.614
	23.5				23.5			
1425 1440			118.1455	1425			386.5569	268.411
1440	24 24.25		120.6327	1440	24		391.8162 397.0754	271.183
			123.1459	1455	24.25	0.350618		273.930
1470	24.5 24.75		125.685	1470	24.5 24.75	0.350618		276.650
1485		0.171	128.25	1485		0.350618	407.594	279.344
1500 1515	25		130.8409	1500	25		412.8533	282.012
	25.25		133.4577	1515	25.25		418.1125	284.655
1530	25.5		136.1005	1530	25.5		423.3718	287.271
1545 1560	25.75 26		138.7691 141.4636	1545	25.75 26		428.6311 433.8904	289.862 292.427
				1560				
1575	26.25		144.1841	1575	26.25		439.1497	294.966
1590	26.5		146.9305	1590	26.5		444.4089	297.478
1605	26.75		149.7027	1605	26.75		449.6682	299.965
1620	27		152.5009	1620	27		454.9275	302.427
1635	27.25	0.188273	155.325	1635	27.25		460.1868	304.862
1650	27.5	0.19	158.175	1650	27.5	0.350618	465.446	307.271
1665	27.75		161.0509	1665	27.75		470.7053	309.654
1680	28		163.9527	1680	28		475.9646	312.012
1695	28.25		166.8805	1695	28.25		481.2239	314.343
1710	28.5		169.8341	1710	28.5		486.4831	316.649
1725	28.75		172.8136	1725	28.75	0.350618	491.7424	318.929
1740	29		175.8191	1740	29		497.0017	321.183
1755	29.25		178.8505	1755	29.25	0.350618	502.261	323.411
1770	29.5		181.9077	1770	29.5		507.5203	325.613
1785	29.75		184.9909	1785	29.75		512.7795	327.789
1800	30	0.207273	188.1	1800	30		518.0388	329.939
1815	30.25	0.209	191.235	1815	30.25	0.350618	523.2981	332.063

1830	30.5		194.3959	1830	30.5	0.350618	528.5574	334.161
1845	30.75		197.5827	1845	30.75		533.8166	336.234
1860	31		200.7955	1860	31		539.0759	338.280
1875	31.25		204.0341	1875	31.25		544.3352	340.301
1890 1905	31.5 31.75		207.2986 210.5891	1890 1905	31.5 31.75		549.5945 554.8538	342.296 344.265
1920	32.73	0.219304		1920	32.73		560.113	346.208
1935	32.25		217.2477	1935	32.25		565.3723	348.125
1950	32.5		220.6159	1950	32.5		570.6316	350.016
1965	32.75	0.226273	224.01	1965	32.75	0.350618	575.8909	351.881
1980	33	0.228	227.43	1980	33	0.350618	581.1501	353.720
1995	33.25	0.229727	230.8759	1995	33.25	0.350618	586.4094	355.534
2010	33.5		234.3477	2010	33.5	0.350618	591.6687	357.321
2025	33.75		237.8455	2025	33.75		596.928	359.083
2040	34		241.3691	2040	34		602.1872	360.818
2055	34.25		244.9186	2055	34.25		607.4465	362.528
2070 2085	34.5 34.75		248.4941 252.0955	2070 2085	34.5 34.75		612.7058 617.9651	364.212 365.870
2100	34.75		252.0955	2100	34.75		623.2244	367.502
2115	35.25		259.3759	2115	35.25		628.4836	369.108
2130	35.5	0.245273		2130	35.5		633.7429	
2145	35.75	0.247	266.76	2145	35.75		639.0022	
2160	36	0.248727	270.4909	2160	36	0.350618	644.2615	373.771
2175	36.25	0.250455	274.2477	2175	36.25	0.350618	649.5207	375.273
2190	36.5		278.0305	2190	36.5	0.350618	654.78	376.750
2205	36.75		281.8391	2205	36.75		660.0393	378.200
2220	37		285.6736	2220	37		665.2986	379.625
2235	37.25		289.5341	2235	37.25		670.5579	
2250 2265	37.5 37.75		293.4205 297.3327	2250 2265	37.5 37.75		675.8171 681.0764	382.397 383.744
2280	37.75		301.2709	2280	37.75		686.3357	385.065
2295	38.25	0.264273		2295	38.25		691.595	386.360
2310	38.5	0.266	309.225	2310	38.5		696.8542	
2325	38.75		313.2409	2325	38.75		702.0338	
2340	39	0.269455	317.2827	2340	39	0.339994	707.1337	389.851
2355	39.25	0.271182	321.3505	2355	39.25		712.154	390.804
2370	39.5		325.4441	2370	39.5		717.0945	391.650
2385	39.75		329.5636	2385	39.75		721.9553	392.392
2400	40		333.7091	2400	40		726.7365	393.027
2415 2430	40.25 40.5		337.8805 342.0777	2415 2430	40.25 40.5		731.438 736.0598	393.558 393.982
2445	40.75		346.3009	2445	40.75		740.6019	
2460	40.73	0.283273		2460	40.73		745.0643	
2475	41.25	0.285	354.825	2475	41.25		749.447	394.622
				2490	41.5	0.28687	753.7501	
				2505	41.75	0.281557	757.9734	
				2520	42	0.276245	762.1171	
				2535	42.25		766.1811	
				2550	42.5		770.1654	
				2565	42.75	0.260308		
				2580	43		777.8949	
				2595 2610	43.25 43.5		781.6402 785.3057	
				2625	43.75		788.8916	
				2640	44		792.3978	
				2655	44.25		795.8243	
				2670	44.5		799.1711	
				2685	44.75	0.217808	802.4382	
				2700	45		805.6257	
				2715	45.25		808.7334	
				2730	45.5		811.7615	
				2745	45.75		814.7099	
				2760 2775	46 46.25		817.5786	
				2/75	46.25	0.185934	820.3676	

2790	46.5	0.180622	823.0769
2805	46.75	0.175309	825.7065
2820	47	0.169997	828.2565
2835	47.25	0.164684	830.7268
2850	47.5	0.159372	833.1173
2865	47.75	0.15406	835.4282
	48		
2880		0.148747	837.6594
2895	48.25	0.143435	839.811
2910	48.5	0.138122	841.8828
2925	48.75	0.13281	843.8749
2940	49	0.127498	845.7874
2955	49.25	0.122185	847.6202
2970	49.5	0.116873	849.3733
2985	49.75	0.11156	851.0467
3000	50	0.106248	852.6404
3015	50.25	0.100936	854.1544
3030	50.5	0.095623	855.5888
3045		0.090311	
	50.75		856.9435
3060	51	0.084998	858.2184
3075	51.25	0.079686	859.4137
3090	51.5	0.074374	860.5293
3105	51.75	0.069061	861.5652
3120	52	0.063749	862.5215
3135	52.25	0.058436	863.398
3150	52.5	0.053124	864.1949
3165	52.75	0.047812	864.9121
3180	53	0.042499	865.5495
3195	53.25	0.037187	866.1073
3210	53.5	0.031874	866.5855
3225	53.75	0.026562	866.9839
3240	54	0.02125	867.3026
3255	54.25	0.015937	867.5417
3270	54.5	0.010625	867.7011
3285	54.75	0.005312	867.7808
3300	55	0	867.7808
3315	55.25	0	867.7808
3330	55.5	0	867.7808
3345	55.75	0	867.7808
3360	56	0	867.7808
3375	56.25	0	867.7808
3390	56.5	0	867.7808
3405	56.75	0	867.7808
3420	57	0	867.7808
3435	57.25	0	867.7808
3450	57.5	0	867.7808
3465	57.75	0	867.7808
3480	58	0	867.7808
3495	58.25	0	867.7808
3510	58.5	0	867.7808
3525	58.75	0	867.7808
3540	59	0	867.7808
3555	59.25	0	867.7808
3570	59.5	0	867.7808
3585	59.75	0	867.7808
3600	60	0	867.7808
3615	60.25	0	867.7808
3630	60.5	0	867.7808
3645	60.75	0	867.7808
3660	61	0	867.7808
3675	61.25	0	867.7808
3690	61.5	0	867.7808
3705	61.75	0	867.7808
3720	62	0	867.7808
3735	62.25	0	867.7808


3750	62.5	0	867.7808
3765	62.75	0	867.7808
3780	63	0	867.7808
3795	63.25	0	867.7808
3810	63.5	0	867.7808
3825	63.75	0	867.7808
3840	64	0	867.7808
3855	64.25	0	867.7808
3870	64.5	0	867.7808
3885	64.75	0	867.7808
3900	65	0	867.7808
3915	65.25	0	867.7808
3930	65.5	0	867.7808
3945	65.75	0	867.7808
3960	66	0	867.7808
3975	66.25	0	867.7808
3990	66.5	0	867.7808
4005	66.75	0	867.7808
4020	67	0	867.7808
4035	67.25	0	867.7808
4050	67.5	0	867.7808
4065	67.75	0	867.7808
4080	68	0	867.7808
4095	68.25	0	867.7808
4110	68.5	0	867.7808
4125	68.75	0	867.7808
4140	69	0	867.7808
4155	69.25	0	867.7808
4170	69.5	0	867.7808
4185	69.75	0	867.7808
4200	70	0	867.7808
4215	70.25	0	867.7808
4230	70.5	0	867.7808
4245	70.75	0	867.7808
4260	71	0	867.7808
4275	71.25	0	867.7808
4290	71.5	0	867.7808
4305	71.75	0	867.7808
4320	72	0	867.7808
4335	72.25	0	867.7808
4350	72.5	0	867.7808
4365	72.75	0	867.7808
4380	73	0	867.7808
4395	73.25	0	867.7808
4410	73.5	0	867.7808
4425	73.75	0	867.7808
4440	74	0	867.7808
4455	74.25	0	867.7808
4470	74.5	0	867.7808
4485	74.75	0	867.7808

Detention Volume - sizing - 1% AEP event - OPTION 4

	Pre-de	veloped			Post-d	leveloped		Detention tank
t [sec]	t [min]	Q [m ³ /s]	V [m ³]	t [sec	t [min]	Q [m ³ /s]	V [m³]	V [m³]
0	0	0	0	0	0	0	0	0
15	0.25		0.019432	15	0.25	0.006297		0.075
30	0.5		0.058295	30	0.5	0.012594	0.283368	0.225
45	0.75		0.116591	45	0.75	0.012334	0.566736	0.450
60	1		0.110331	60	1	0.025188	0.94456	0.750
75	1.25		0.291477	75	1.25	0.031485	1.41684	1.125
90	1.5		0.408068	90	1.5	0.037782	1.983577	1.576
105	1.75	0.009068	0.544091	105	1.75	0.044079	2.644769	2.101
120	2	0.010364	0.699545	120	2	0.050377	3.400417	2.701
135	2.25	0.011659	0.874432	135	2.25	0.056674	4.250521	3.376
150	2.5	0.012955	1.06875	150	2.5	0.062971	5.195082	4.126
165	2.75	0.01425	1.2825	165	2.75	0.069268	6.234098	4.952
180	3		1.515682	180	3	0.075565	7.36757	5.852
195	3.25	0.016841	1.768295	195	3.25	0.081862	8.595499	6.827
210	3.5		2.040341	210	3.5	0.088159	9.917883	7.878
225	3.75		2.331818	225	3.75	0.094456	11.33472	9.003
240	4	0.020727		240	4	0.100753	12.84602	10.203
255	4.25	0.022023	2.973068	255	4.25	0.10705	14.45177	11.479
270	4.5		3.322841	270	4.5	0.113347	16.15198	12.829
285	4.75 5		3.692045	285 300	4.75 5	0.119644	17.94665	14.255
300 315	5 5.25	0.025909 0.027205	4.080682 4.48875	315	5 5.25	0.125941 0.132238	19.83577 21.81934	15.755 17.331
330	5.25	0.027205	4.48875	330	5.25	0.132238	23.89738	18.981
345	5.75	0.0283		345	5.75	0.138330	26.06986	20.707
360	6		5.829545	360	6	0.15113	28.33681	22.507
375	6.25		6.315341	375	6.25	0.157427	30.69821	24.383
390	6.5		6.820568	390	6.5	0.163724	33.15407	26.333
405	6.75	0.034977	7.345227	405	6.75	0.170021	35.70438	28.359
420	7	0.036273	7.889318	420	7	0.176318	38.34915	30.460
435	7.25	0.037568	8.452841	435	7.25	0.182615	41.08837	32.636
450	7.5	0.038864	9.035795	450	7.5	0.188912	43.92205	34.886
465	7.75	0.040159	9.638182	465	7.75	0.195209	46.85019	37.212
480	8	0.041455	10.26	480	8	0.201506	49.87278	39.613
495	8.25	0.04275	10.90125	495	8.25	0.207803	52.98983	42.089
510	8.5	0.044045	11.56193	510	8.5	0.2141	56.20134	44.639
525	8.75		12.24205	525	8.75	0.220397	59.5073	47.265
540 555	9 9.25	0.046636	12.94159	540 555	9 9.25	0.226694 0.232992	62.90772	49.966
	9.25		13.66057				66.40259	52.742
570 585	9.5 9.75	0.049227	14.39898 15.15682	570 585	9.5 9.75	0.239289 0.245586	69.99192 73.6757	55.593 58.519
600	10	0.050323	15.13082	600	10	0.251883	77.45395	61.520
615	10.25	0.053114	16.7308	615	10.25	0.251005	81.32664	64.596
630	10.5	0.054409		630	10.5	0.264477	85.2938	67.747
645	10.75	0.055705	18.3825	645	10.75	0.270774	89.35541	70.973
660	11	0.057	19.2375	660	11	0.277071	93.51147	74.274
675	11.25	0.058295	20.11193	675	11.25	0.277071	97.66754	77.556
690	11.5	0.059591	21.0058	690	11.5	0.277071	101.8236	80.818
705	11.75	0.060886	21.91909	705	11.75	0.277071	105.9797	84.061
720	12		22.85182	720	12	0.277071		87.284
735	12.25		23.80398	735	12.25	0.277071		90.488
750	12.5	0.064773	24.77557	750	12.5	0.277071		93.672
765	12.75	0.066068	25.76659	765	12.75	0.277071		96.837
780	13	0.067364	26.77705	780	13	0.277071	126.76	99.983
795	13.25	0.068659	27.80693	795	13.25	0.277071		103.109
810	13.5	0.069955	28.85625	810	13.5	0.277071		106.216
825 840	13.75 14	0.07125 0.072545	29.925 31.01318	825 840	13.75 14	0.277071 0.277071		109.303 112.371
840 855	14 14.25	0.072545	31.01318	840 855	14 14.25	0.277071		112.371 115.420
000	14.25	0.073841	32.1208	855	14.25	0.2//0/1	147.5403	115.420

			Δt [sec]	15	
Q ₁₀₀ [m ³ /s]	0.285	Pre-developed	Q ₁₀₀ [m ³ /s]	0.277	Developed
Tc [min]	55.00	peak flow	Tc [min]	11.00	peak flow
Tc [sec]	3300		Tc [sec]	660	
	8.64E-05			0.00042	
Tc [min]			Tc [min]	55.00	end of storm
Tc [sec]			Tc [sec]	3300	
T [min]	71.5	end simulation	T [min]	71.5	end simulation
T [sec]	4290		T [sec]	4290	
	6.64E-05			0.00028	

Detention volume [m³] 353

870	14.5		33.24784	870	14.5		151.6964	118.449
885	14.75		34.39432	885	14.75	0.277071		121.458
900	15		35.56023	900	15	0.277071		124.448
915	15.25		36.74557	915	15.25	0.277071		127.419
930 945	15.5 15.75	0.080318	37.95034	930 945	15.5 15.75	0.277071 0.277071		130.370
960	15.75		40.41818	945 960	16	0.277071		133.302 136.215
975	16.25		41.68125	975	16.25	0.277071		139.108
990	16.5	0.0855	42.96375	990	16.5	0.277071		141.981
1005	16.75	0.086795	44.26568	1005	16.75	0.277071	189.101	144.835
1020	17	0.088091	45.58705	1020	17	0.277071	193.257	147.670
1035	17.25	0.089386	46.92784	1035	17.25	0.277071	197.4131	150.485
1050	17.5		48.28807	1050	17.5	0.277071		153.281
1065	17.75	0.091977		1065	17.75	0.277071		156.058
1080	18		51.06682	1080	18	0.277071		158.814
1095	18.25		52.48534	1095	18.25	0.277071		161.552
1110 1125	18.5 18.75	0.095864	53.9233 55.38068	1110 1125	18.5 18.75	0.277071 0.277071		164.270 166.969
1140	19	0.097139	56.8575	1140	19.75	0.277071		169.648
1155	19.25	0.09975	58.35375	1155	19.25	0.277071		172.308
1170	19.5	0.101045	59.86943	1170	19.5	0.277071		174.948
1185	19.75	0.102341		1185	19.75	0.277071		177.569
1200	20	0.103636	62.95909	1200	20	0.277071	243.1298	180.171
1215	20.25	0.104932	64.53307	1215	20.25	0.277071	247.2859	182.753
1230	20.5		66.12648	1230	20.5	0.277071	251.442	185.315
1245	20.75		67.73932	1245	20.75	0.277071	255.598	187.859
1260	21		69.37159	1260	21	0.277071		190.382
1275	21.25	0.110114	71.0233	1275	21.25	0.277071		192.887
1290 1305	21.5 21.75	0.111409	72.69443	1290 1305	21.5 21.75	0.277071 0.277071		195.372
1320	21.75	0.112705	74.385 76.095	1320	21.75	0.277071		197.837 200.283
1335	22.25		77.82443	1335	22.25	0.277071		200.283
1350	22.5	0.116591	79.5733	1350	22.5	0.277071		205.117
1365	22.75		81.34159	1365	22.75	0.277071		207.505
1380	23	0.119182	83.12932	1380	23	0.277071	293.0026	209.873
1395	23.25	0.120477	84.93648	1395	23.25	0.277071	297.1587	212.222
1410	23.5	0.121773	86.76307	1410	23.5	0.277071		214.552
1425	23.75	0.123068	88.60909	1425	23.75	0.277071		216.862
1440	24	0.124364		1440	24	0.277071		219.152
1455	24.25		92.35943	1455	24.25	0.277071		221.424
1470 1485	24.5 24.75	0.126955 0.12825	94.26375	1470	24.5 24.75	0.277071 0.277071		223.675
1500	24.75 25	0.12825	96.1875 98.13068	1485 1500	24.75	0.277071		225.908 228.120
1515	25.25		100.0933	1515	25.25	0.277071		230.314
1530	25.5		102.0753	1530	25.5	0.277071		232.488
1545	25.75		104.0768	1545	25.75	0.277071		234.643
1560	26	0.134727	106.0977	1560	26	0.277071	342.8754	236.778
1575	26.25	0.136023	108.1381	1575	26.25	0.277071	347.0315	238.893
1590	26.5	0.137318	110.1978	1590	26.5	0.277071	351.1875	240.990
1605	26.75	0.138614	112.277	1605	26.75	0.277071	355.3436	243.067
1620	27		114.3757	1620	27	0.277071		245.124
1635	27.25		116.4938	1635	27.25	0.277071		247.162
1650	27.5	0.1425	118.6313	1650	27.5	0.277071		249.181
1665 1680	27.75 28		120.7882 122.9645	1665 1680	27.75 28	0.277071 0.277071		251.180 253.159
1695	28.25		125.1603	1695	28.25	0.277071	380.28	255.120
1710	28.5		127.3756	1710	28.5	0.277071		257.060
1725	28.75	0.148977	129.6102	1725	28.75	0.277071		258.982
1740	29		131.8643	1740	29	0.277071		260.884
1755	29.25	0.151568	134.1378	1755	29.25	0.277071	396.9042	262.766
1770	29.5		136.4308	1770	29.5	0.277071		264.630
1785	29.75		138.7432	1785	29.75		405.2164	266.473
1800	30	0.155455	141.075	1800	30	0.277071		268.297
1815	30.25	0.15675	143.4263	1815	30.25	0.277071	413.5285	270.102

1830	30.5	0.158045	145.7969	1830	30.5	0.277071	417.6846	271.888
1845	30.75	0.159341	148.187	1845	30.75		421.8406	273.654
1860	31	0.160636		1860	31	0.277071		275.400
1875 1890	31.25 31.5	0.161932 0.163227	153.0256 155.474	1875 1890	31.25 31.5		430.1528 434.3088	277.127 278.835
1905	31.75	0.163227		1905	31.75		434.3088	280.523
1920	32	0.165818		1920	32	0.277071	442.621	282.192
1935	32.25	0.167114		1935	32.25	0.277071	446.777	283.841
1950	32.5	0.168409	165.4619	1950	32.5	0.277071	450.9331	285.471
1965	32.75	0.169705	168.0075	1965	32.75	0.277071	455.0892	287.082
1980	33	0.171	170.5725	1980	33		459.2452	288.673
1995	33.25	0.172295		1995	33.25		463.4013	290.244
2010	33.5	0.173591		2010	33.5		467.5574	291.797
2025 2040	33.75 34	0.174886 0.176182		2025 2040	33.75 34		471.7134 475.8695	293.329 294.843
2055	34.25	0.177477	183.689	2055	34.25		480.0256	294.643
2070	34.23	0.177477		2070	34.23		484.1816	297.811
2085	34.75	0.180068		2085	34.75	0.277071		299.266
2100	35	0.181364	191.792	2100	35	0.277071	492.4938	300.702
2115	35.25	0.182659	194.5319	2115	35.25	0.277071	496.6498	302.118
2130	35.5	0.183955	197.2913	2130	35.5	0.277071	500.8059	303.515
2145	35.75	0.18525	200.07	2145	35.75		504.9619	304.892
2160	36	0.186545		2160	36	0.277071	509.118	306.250
2175 2190	36.25 36.5	0.187841 0.189136		2175 2190	36.25 36.5	0.277071 0.277071		307.588 308.907
2190	36.75	0.189136		2205	36.75		521.5862	310.207
2220	37	0.190432		2220	37		525.7423	311.487
2235	37.25	0.193023		2235	37.25		529.8983	312.748
2250	37.5	0.194318		2250	37.5		534.0544	313.989
2265	37.75	0.195614	222.9995	2265	37.75	0.277071	538.2105	315.211
2280	38	0.196909	225.9532	2280	38	0.277071	542.3665	316.413
2295	38.25	0.198205		2295	38.25		546.5226	317.596
2310	38.5	0.1995	231.9188	2310	38.5	0.277071		318.760
2325 2340	38.75 39	0.200795		2325	38.75	0.277071		319.904
2340	39 39.25	0.202091 0.203386	237.962	2340 2355	39 39.25		558.9908 563.1469	321.029 322.134
2370	39.25	0.203380		2370	39.23		567.3029	323.220
2385	39.75	0.205977		2385	39.75	0.277071	571.459	324.286
2400	40	0.207273		2400	40	0.277071		325.333
2415	40.25	0.208568	253.4103	2415	40.25	0.277071	579.7711	326.361
2430	40.5	0.209864	256.5583	2430	40.5	0.277071	583.9272	327.369
2445	40.75	0.211159		2445	40.75		588.0833	328.358
2460	41	0.212455		2460	41		592.2393	329.327
2475	41.25	0.21375	266.1188	2475	41.25		596.3954	330.277
2490 2505	41.5 41.75	0.215045 0.216341		2490 2505	41.5 41.75	0.277071	600.5515	331.207 332.118
2520	41.75	0.210341		2520	41.73		608.8636	333.009
2535	42.25	0.217030		2535	42.25		613.0196	333.882
2550	42.5	0.220227		2550	42.5	0.277071		334.734
2565	42.75	0.221523	285.7643	2565	42.75	0.277071	621.3318	335.567
2580	43	0.222818	289.1066	2580	43		625.4878	336.381
2595	43.25	0.224114		2595	43.25		629.6439	337.176
2610	43.5	0.225409		2610	43.5	0.277071	633.8	337.951
2625	43.75	0.226705	299.25	2625	43.75	0.277071	637.956	338.706
2640 2655	44 44.25	0.228 0.229295	302.67	2640 2655	44 44.25		642.1121 646.2682	339.442
2655	44.25 44.5	0.229295		2670	44.25		650.4242	340.159 340.856
2685	44.5 44.75	0.230591		2685	44.5		654.5803	341.534
2700	45	0.233182		2700	45		658.7364	342.192
2715	45.25	0.234477		2715	45.25	0.277071		342.831
2730	45.5	0.235773		2730	45.5	0.277071		343.450
2745	45.75	0.237068		2745	45.75		671.2046	344.050
2760	46	0.238364		2760	46		675.3606	344.631
2775	46.25	0.239659	334.3244	2775	46.25	0.277071	679.5167	345.192

2790	46.5	0.240955	337.9388	2	790	46.5	0.277071	683.6728
2805	46.75	0.24225	341.5725	2	805	46.75	0.277071	687.8288
2820	47	0.243545	345.2257		820	47	0.277071	691.9849
2835	47.25		348.8983		835	47.25	0.277071	696.141
2850	47.5		352.5903		850	47.5	0.277071	700.297
2865 2880	47.75 48	0.247432	356.3018 360.0327		865 880	47.75 48	0.277071 0.277071	704.4531 708.6092
2895	48.25		363.7831		895	48.25	0.277071	712.7652
2910	48.5	0.250023			910	48.5	0.277071	716.9213
2925	48.75	0.252614	371.342		925	48.75	0.277071	721.0773
2940	49		375.1507		940	49	0.277071	725.2334
2955	49.25	0.255205	378.9788		955	49.25	0.277071	729.3895
2970	49.5	0.2565	382.8263	2	970	49.5	0.277071	733.5455
2985	49.75	0.257795	386.6932	2	985	49.75	0.277071	737.7016
3000	50		390.5795		000	50	0.277071	741.8577
3015	50.25		394.4853		015	50.25	0.277071	746.0137
3030	50.5		398.4106	-	030	50.5	0.277071	750.1698
3045	50.75		402.3552		045	50.75 51	0.277071	754.3259
3060 3075	51 51.25		406.3193 410.3028		060 075	51.25	0.277071 0.277071	758.4819 762.638
3090	51.25		414.3058		090	51.25	0.277071	766.7941
3105	51.75		418.3282		105	51.75	0.277071	770.9501
3120	52	0.269455	422.37		120	52	0.277071	775.1062
3135	52.25	0.27075	426.4313		135	52.25	0.277071	779.2623
3150	52.5	0.272045	430.5119		150	52.5	0.277071	783.4183
3165	52.75	0.273341	434.612	3	165	52.75	0.277071	787.5744
3180	53	0.274636	438.7316	3	180	53	0.277071	791.7305
3195	53.25		442.8706	3	195	53.25	0.277071	795.8865
3210	53.5	0.277227	447.029		210	53.5	0.277071	800.0426
3225	53.75		451.2068		225	53.75	0.277071	804.1987
3240	54		455.4041		240	54	0.277071	
3255 3270	54.25 54.5	0.281114	459.6208 463.8569		255 270	54.25 54.5	0.277071 0.277071	812.5108 816.6669
3270	54.5 54.75		468.1125		270 285	54.75	0.277071	820.8229
3300	55	0.285	472.3875		300	55	0.277071	824.979
3300	33	0.203	472.3073		315	55.25	0.272873	829.0721
					330	55.5	0.268675	833.1022
				3	345	55.75	0.264477	837.0694
				3	360	56	0.260279	840.9735
				3	375	56.25	0.256081	844.8148
					390	56.5	0.251883	848.593
					405	56.75	0.247685	852.3083
				-	420	57	0.243487	855.9606
					435	57.25	0.239289	859.5499
					450 465	57.5 57.75	0.235091 0.230893	863.0762 866.5396
					480	58	0.230693	869.9401
					495	58.25	0.222496	873.2775
					510	58.5	0.218298	876.552
					525	58.75	0.2141	879.7635
				3	540	59	0.209902	882.912
				3	555	59.25	0.205704	885.9976
					570	59.5	0.201506	889.0202
					585	59.75	0.197308	891.9798
					600	60	0.19311	894.8764
					615	60.25	0.188912	
					630	60.5	0.184714	900.4808
					645 660	60.75 61	0.180516 0.176318	903.1886
					675	61.25	0.176318	905.8333
					690	61.5	0.17212	910.934
				-	705	61.75	0.163724	
					720	62	0.159526	

62.25 0.155328 918.1126

345.734

346.256

346.759

347.243

347.707

348.151

348.576

348.982

349.368

349.735

350.083

350.411

350.719

351.008

351.278

351.528

351.759

351.971

352.163

352.335

352.488

352.622

352.736

352.831

352.906

352.962

352.999

353.016

353.014

352.992

352.951

352.890

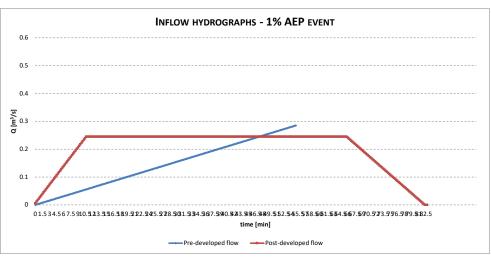
352.810

352.710

352.591

3750	62.5	0.15113	920.3796
3765	62.75	0.146932	922.5835
3780	63	0.142734	924.7246
3795	63.25	0.138536	926.8026
3810	63.5	0.134337	928.8176
3825	63.75	0.130139	930.7697
3840	64	0.125941	932.6589
3855	64.25	0.121743	934.485
3870	64.5	0.117545	936.2482
3885	64.75	0.117343	937.9484
3900	65	0.113347	939.5856
3915	65.25	0.104951	941.1599
3930	65.5	0.100753	942.6712
3945	65.75	0.096555	944.1195
3960	66	0.092357	945.5049
3975	66.25	0.088159	946.8273
3990	66.5	0.083961	948.0867
4005	66.75	0.079763	949.2831
4020	67	0.075565	950.4166
4035	67.25	0.071367	951.4871
4050	67.5	0.067169	952.4946
4065	67.75	0.062971	953.4392
4080	68	0.052371	
			954.3208
4095	68.25	0.054575	955.1394
4110	68.5	0.050377	955.895
4125	68.75	0.046179	956.5877
4140	69	0.04198	957.2174
4155	69.25	0.037782	957.7842
4170	69.5	0.033584	958.2879
4185	69.75	0.029386	958.7287
4200	70	0.025188	959.1065
4215	70.25	0.02099	959.4214
4230	70.5	0.016792	959.6733
4245	70.75	0.010792	959.8622
4260	71	0.008396	959.9881
4275	71.25	0.004198	960.0511
4290	71.5	0	960.0511
4305	71.75	0	960.0511
4320	72	0	960.0511
4335	72.25	0	960.0511
4350	72.5	0	960.0511
4365	72.75	0	960.0511
4380	73	0	960.0511
4395	73.25	0	960.0511
4410	73.5	0	960.0511
4425	73.75	0	960.0511
4440	73.73	0	960.0511
4455	74.25	0	960.0511
4470	74.5	0	960.0511
4485	74.75	0	960.0511
4500	75	0	960.0511
4515	75.25	0	960.0511
4530	75.5	0	960.0511
4545	75.75	0	960.0511
4560	76	0	960.0511
4575	76.25	0	960.0511
4590	76.5	0	960.0511
4605	76.75	0	960.0511
4620	76.75 77	0	
		0	960.0511
4635	77.25		960.0511
4650	77.5	0	960.0511
4665	77.75	0	960.0511
4680	78	0	960.0511
4695	78.25	0	960.0511

4710	78.5	0	960.0511
4725	78.75	0	960.0511
4740	79	0	960.0511
4755	79.25	0	960.0511
4770	79.5	0	960.0511
4785	79.75	0	960.0511
4800	80	0	960.0511
4815	80.25	0	960.0511
4830	80.5	0	960.0511
4845	80.75	0	960.0511
4860	81	0	960.0511
4875	81.25	0	960.0511
4890	81.5	0	960.0511
4905	81.75	0	960.0511
4920	82	0	960.0511
4935	82.25	0	960.0511
4950	82.5	0	960.0511
4965	82.75	0	960.0511
4980	83	0	960.0511


Detention Volume - sizing - 1% AEP event - OPTION 4

	Pre-de	veloped		1		Post-de	eveloped		Detention tank
t [sec]	t [min]	Q [m ³ /s]	V [m³]		t [sec]	t [min]	Q [m ³ /s]	V [m³]	V [m³]
0	0	0	0		0	0	0	0	0
15	0.25	0.001295	0.019432		15	0.25	0.005562	0.083433	0.064
30	0.5	0.002591	0.058295		30	0.5	0.011124	0.250298	0.192
45	0.75	0.003886	0.116591		45	0.75	0.016687	0.500595	0.384
60	1	0.005182	0.194318		60	1	0.022249	0.834326	0.640
75	1.25	0.006477	0.291477		75	1.25	0.027811	1.251488	0.960
90	1.5	0.007773	0.408068		90	1.5	0.033373	1.752084	1.344
105	1.75	0.009068	0.544091		105	1.75	0.038935	2.336112	1.792
120	2	0.010364	0.699545		120	2	0.044497	3.003572	2.304
135	2.25	0.011659	0.874432		135	2.25	0.05006	3.754465	2.880
150	2.5	0.012955	1.06875		150	2.5	0.055622	4.588791	3.520
165	2.75	0.01425	1.2825		165	2.75	0.061184	5.506549	4.224
180	3	0.015545	1.515682		180	3	0.066746	6.50774	4.992
195	3.25	0.016841	1.768295		195	3.25	0.072308	7.592363	5.824
210	3.5	0.018136	2.040341		210	3.5	0.07787	8.760419	6.720
225	3.75		2.331818		225	3.75	0.083433	10.01191	7.680
240	4	0.020727			240	4	0.088995	11.34683	8.704
255	4.25		2.973068		255	4.25	0.094557	12.76518	9.792
270	4.5	0.023318	3.322841		270	4.5	0.100119	14.26697	10.944
285	4.75	0.024614	3.692045		285	4.75	0.105681	15.85219	12.160
300	5	0.025909	4.080682		300	5	0.111243	17.52084	13.440
315	5.25 5.5	0.027205	4.48875		315	5.25 5.5	0.116806	19.27292	14.784
330 345	5.5 5.75	0.0285 0.029795	4.91625 5.363182		330 345	5.5 5.75	0.122368 0.12793	21.10844 23.02739	16.192 17.664
345 360	5.75 6	0.029795	5.829545		360	6	0.12793	25.02739	19.200
375	6.25	0.031031	6.315341		375	6.25	0.133452	27.11558	20.800
390	6.5	0.032580	6.820568		390	6.5	0.144616	29.28483	22.464
405	6.75	0.033082	7.345227		405	6.75	0.150179	31.53751	24.192
420	7	0.034377	7.889318		420	7	0.155741	33.87362	25.984
435	7.25	0.037568	8.452841		435	7.25	0.161303	36.29316	27.840
450	7.5	0.038864	9.035795		450	7.5	0.166865	38.79614	29.760
465	7.75	0.040159	9.638182		465	7.75	0.172427	41.38255	31.744
480	8	0.041455	10.26		480	8	0.177989	44.05239	33.792
495	8.25	0.04275	10.90125		495	8.25	0.183552	46.80567	35.904
510	8.5	0.044045	11.56193		510	8.5	0.189114	49.64237	38.080
525	8.75	0.045341	12.24205		525	8.75	0.194676	52.56251	40.320
540	9	0.046636	12.94159		540	9	0.200238	55.56608	42.624
555	9.25	0.047932	13.66057		555	9.25	0.2058	58.65309	44.993
570	9.5	0.049227	14.39898		570	9.5	0.211362	61.82353	47.425
585	9.75	0.050523	15.15682		585	9.75	0.216925	65.0774	49.921
600	10	0.051818	15.93409		600	10	0.222487	68.4147	52.481
615	10.25	0.053114	16.7308		615	10.25	0.228049	71.83543	55.105
630	10.5	0.054409	17.54693		630	10.5	0.233611	75.3396	57.793
645	10.75	0.055705	18.3825		645	10.75	0.239173	78.9272	60.545
660	11	0.057	19.2375		660	11	0.244736	82.59823	63.361
675	11.25	0.058295			675	11.25	0.244736	86.26927	66.157
690	11.5	0.059591	21.0058		690	11.5	0.244736	89.9403	68.935
705	11.75	0.060886			705	11.75	0.244736	93.61133	71.692
720	12	0.062182	22.85182		720	12	0.244736	97.28236	74.431
735	12.25	0.063477	23.80398		735	12.25	0.244736	100.9534	77.149
750 765	12.5 12.75	0.064773 0.066068	24.77557 25.76659		750	12.5 12.75	0.244736 0.244736	104.6244	79.849 82.529
765 780	12.75	0.066068	26.77705		765 780	12.75	0.244736	108.2955	82.529 85.189
780 795	13 13.25	0.067364	27.80693		780 795	13.25	0.244736	111.9665 115.6375	85.189 87.831
795 810	13.25	0.068659	28.85625		795 810	13.25	0.244736	119.3086	90.452
825	13.75	0.009933	29.925		825	13.75	0.244736	122.9796	93.055
840	14		31.01318		840	14	0.244736	126.6506	95.637
855	14.25	0.072343	32.1208		855	14.25	0.244736	130.3217	98.201
033	14.23	5.075041	52.1200		033	17.23	5.244,30	130.3217	30.201

			Δt [sec]	15	
$Q_{100} [m^3/s]$	0.285	Pre-developed	Q ₁₀₀ [m ³ /s]	0.245	Developed
Tc [min] Tc [sec]	55.00 3300 8.64E-05	peak flow	Tc [min] Tc [sec]	11.00 660 0.000371	peak flow
Tc [min] Tc [sec]			Tc [min] Tc [sec]	66.00 3960	end of storm
T [min] T [sec]	82.5 4950 5.76E-05	end simulation	T [min] T [sec]	82.5 4950 0.000247	end simulation

Detention volume [m³] 266

i

870	14.5		33.24784	870	14.5	0.244736		100.745
885	14.75		34.39432	885	14.75		137.6637	103.269
900	15	0.077727	35.56023	900	15		141.3348	105.775
915	15.25	0.079023	36.74557	915	15.25	0.244736	145.0058	108.260
930	15.5		37.95034	930	15.5		148.6768	110.726
945	15.75		39.17455	945	15.75	0.244736		113.173
960	16		40.41818	960	16	0.244736	156.0189	115.601
975	16.25	0.084205	41.68125	975	16.25	0.244736	159.6899	118.009
990	16.5	0.0855	42.96375	990	16.5	0.244736	163.361	120.397
1005 1020	16.75 17	0.086795 0.088091	44.26568	1005	16.75 17	0.244736 0.244736	167.032 170.703	122.766
1020	17 17.25	0.088091	45.58705 46.92784	1020 1035	17 17.25	0.244736	170.703	125.116 127.446
1050	17.25	0.089386	48.28807	1050	17.25	0.244736	178.0451	129.757
1065	17.75	0.090082	49.66773	1065	17.75	0.244736	181.7161	132.048
1080	18		51.06682	1080	18	0.244736	185.3871	134.320
1095	18.25	0.093273	52.48534	1095	18.25	0.244736	189.0582	136.573
1110	18.5	0.095864	53.9233	1110	18.5	0.244736	192.7292	138.806
1125	18.75	0.097159	55.38068	1125	18.75		196.4002	141.020
1140	19	0.098455	56.8575	1140	19	0.244736	200.0713	143.214
1155	19.25	0.09975	58.35375	1155	19.25	0.244736		145.389
1170	19.5	0.101045	59.86943	1170	19.5	0.244736	207.4133	147.544
1185	19.75	0.102341	61.40455	1185	19.75	0.244736	211.0844	149.680
1200	20	0.103636	62.95909	1200	20	0.244736	214.7554	151.796
1215	20.25	0.104932	64.53307	1215	20.25	0.244736	218.4264	153.893
1230	20.5	0.106227	66.12648	1230	20.5	0.244736	222.0975	155.971
1245	20.75	0.107523	67.73932	1245	20.75	0.244736	225.7685	158.029
1260	21	0.108818	69.37159	1260	21	0.244736	229.4395	160.068
1275	21.25	0.110114	71.0233	1275	21.25	0.244736	233.1106	162.087
1290	21.5	0.111409	72.69443	1290	21.5	0.244736	236.7816	164.087
1305	21.75	0.112705	74.385	1305	21.75	0.244736	240.4526	166.068
1320	22	0.114	76.095	1320	22	0.244736	244.1237	168.029
1335	22.25		77.82443	1335	22.25	0.244736		169.970
1350	22.5	0.116591	79.5733	1350	22.5		251.4657	171.892
1365	22.75		81.34159	1365	22.75		255.1368	173.795
1380	23	0.119182		1380	23	0.244736		175.678
1395	23.25	0.120477	84.93648	1395	23.25	0.244736	262.4788	177.542
1410	23.5	0.121773	86.76307	1410	23.5	0.244736	266.1499	179.387
1425	23.75	0.123068	88.60909	1425	23.75	0.244736	269.8209	181.212
1440 1455	24 24.25	0.124364 0.125659	90.47455 92.35943	1440 1455	24 24.25	0.244736	273.4919 277.163	183.017 184.804
1470	24.25	0.125655	94.26375	1455	24.25	0.244736	280.834	184.804
1485	24.5	0.12835	96.1875	1485	24.75	0.244736	284.505	188.318
1500	25	0.129545	98.13068	1500	25	0.244736	288.1761	190.045
1515	25.25	0.120343	100.0933	1515	25.25	0.244736	291.8471	191.754
1530	25.5	0.132136	102.0753	1530	25.5		295.5181	193.443
1545	25.75	0.133432	104.0768	1545	25.75		299.1892	195.112
1560	26	0.134727	106.0977	1560	26	0.244736		196.762
1575	26.25	0.136023	108.1381	1575	26.25	0.244736	306.5312	198.393
1590	26.5		110.1978	1590	26.5	0.244736		200.004
1605	26.75	0.138614	112.277	1605	26.75	0.244736	313.8733	201.596
1620	27	0.139909	114.3757	1620	27	0.244736	317.5443	203.169
1635	27.25	0.141205	116.4938	1635	27.25	0.244736	321.2154	204.722
1650	27.5	0.1425	118.6313	1650	27.5	0.244736	324.8864	206.255
1665	27.75	0.143795	120.7882	1665	27.75	0.244736	328.5574	207.769
1680	28	0.145091	122.9645	1680	28	0.244736	332.2285	209.264
1695	28.25	0.146386	125.1603	1695	28.25	0.244736	335.8995	210.739
1710	28.5	0.147682	127.3756	1710	28.5	0.244736		212.195
1725	28.75	0.148977	129.6102	1725	28.75	0.244736	343.2415	213.631
1740	29	0.150273	131.8643	1740	29		346.9126	215.048
1755	29.25	0.151568	134.1378	1755	29.25	0.244736	350.5836	216.446
1770	29.5	0.152864	136.4308	1770	29.5	0.244736		217.824
1785	29.75	0.154159	138.7432	1785	29.75		357.9257	219.182
1800	30	0.155455	141.075	1800	30		361.5967	220.522
1815	30.25	0.15675	143.4263	1815	30.25	0.244736	365.2677	221.841

1830	30.5	0.158045	145 7060	1830	30.5	0.244726	368.9388	223.142
1845	30.75	0.158043	148.187	1845	30.75		372.6098	224.423
1860	31	0.160636		1860	31		376.2808	225.684
1875	31.25		153.0256	1875	31.25		379.9519	226.926
1890	31.5	0.163227	155.474	1890	31.5		383.6229	228.149
1905	31.75	0.164523	157.9418	1905	31.75	0.244736	387.2939	229.352
1920	32	0.165818	160.4291	1920	32	0.244736	390.965	230.536
1935	32.25	0.167114	162.9358	1935	32.25	0.244736	394.636	231.700
1950	32.5	0.168409	165.4619	1950	32.5	0.244736	398.307	232.845
1965	32.75	0.169705	168.0075	1965	32.75	0.244736	401.9781	233.971
1980	33	0.171	170.5725	1980	33	0.244736	405.6491	235.077
1995	33.25		173.1569	1995	33.25		409.3201	236.163
2010	33.5	0.173591		2010	33.5		412.9912	237.230
2025	33.75	0.174886		2025	33.75		416.6622	238.278
2040	34	0.176182		2040	34		420.3332	239.306
2055	34.25	0.177477	183.689	2055	34.25		424.0043	240.315
2070	34.5		186.3706	2070	34.5		427.6753	241.305
2085	34.75		189.0716	2085	34.75		431.3463	242.275
2100	35	0.181364	191.792	2100	35		435.0174	243.225
2115	35.25		194.5319	2115	35.25		438.6884	244.156
2130	35.5	0.183955	197.2913	2130	35.5	0.244736	442.3594	245.068
2145	35.75	0.18525	200.07	2145	35.75	0.244736	446.0305	245.960
2160	36	0.186545	202.8682	2160	36	0.244736	449.7015	246.833
2175	36.25	0.187841	205.6858	2175	36.25	0.244736	453.3725	247.687
2190	36.5	0.189136	208.5228	2190	36.5	0.244736	457.0436	248.521
2205	36.75	0.190432	211.3793	2205	36.75	0.244736	460.7146	249.335
2220	37	0.191727	214.2552	2220	37	0.244736	464.3856	250.130
2235	37.25	0.193023	217.1506	2235	37.25	0.244736	468.0567	250.906
2250	37.5	0.194318		2250	37.5	0.244736		251.662
2265	37.75	0.195614		2265	37.75	0.244736		252.399
2280	38		225.9532	2280	38		479.0698	253.117
2295	38.25	0.198205		2295	38.25		482.7408	253.815
2310	38.5	0.1995	231.9188	2310	38.5		486.4118	254.493
2325	38.75	0.200795		2325	38.75		490.0829	255.152
2340	39 39.25	0.202091	237.962	2340	39		493.7539	255.792
2355 2370	39.25	0.203386	244.0831	2355 2370	39.25 39.5	0.244736	497.4249 501.096	256.412 257.013
2385	39.75	0.205977		2385	39.75	0.244736	504.767	257.594
2400	40		250.2818	2400	40	0.244736	508.438	258.156
2415	40.25	0.208568		2415	40.25	0.244736	512.109	258.699
2430	40.5		256.5583	2430	40.5		515.7801	259.222
2445	40.75	0.211159		2445	40.75		519.4511	259.725
2460	41	0.212455		2460	41		523.1221	260.210
2475	41.25	0.21375	266.1188	2475	41.25		526.7932	260.674
2490	41.5	0.215045	269.3444	2490	41.5	0.244736	530.4642	261.120
2505	41.75	0.216341	272.5895	2505	41.75	0.244736	534.1352	261.546
2520	42	0.217636	275.8541	2520	42	0.244736	537.8063	261.952
2535	42.25	0.218932	279.1381	2535	42.25	0.244736	541.4773	262.339
2550	42.5	0.220227	282.4415	2550	42.5	0.244736	545.1483	262.707
2565	42.75	0.221523	285.7643	2565	42.75	0.244736	548.8194	263.055
2580	43	0.222818	289.1066	2580	43	0.244736	552.4904	263.384
2595	43.25	0.224114		2595	43.25		556.1614	263.693
2610	43.5	0.225409		2610	43.5	0.244736		263.983
2625	43.75	0.226705	299.25	2625	43.75		563.5035	264.254
2640	44	0.228	302.67	2640	44	0.244736		264.505
2655	44.25		306.1094	2655	44.25		570.8456	264.736
2670	44.25	0.229293			44.25		574.5166	264.948
				2670				
2685	44.75	0.231886		2685	44.75		578.1876	265.141
2700	45 45 25	0.233182		2700	45 45.25	0.244736		265.314
2715	45.25		320.0615	2715	45.25	0.244736		265.468
2730	45.5	0.235773		2730	45.5	0.244736		265.603
2745	45.75	0.237068		2745	45.75		592.8718	265.718
2760	46	0.238364		2760	46		596.5428	265.813
2775	46.25	0.239659	334.3244	2775	46.25	0.244736	600.2138	265.889

2790	46.5	0.240955	337.9388	2	2790	46.5	0.244736	603.8849
2805	46.75	0.24225	341.5725	2	2805	46.75	0.244736	607.5559
2820	47	0.243545	345.2257	2	2820	47	0.244736	611.2269
2835	47.25	0.244841	348.8983	2	2835	47.25	0.244736	614.898
2850	47.5	0.246136	352.5903	2	2850	47.5	0.244736	618.569
2865	47.75	0.247432	356.3018		2865	47.75	0.244736	622.24
2880	48	0.248727	360.0327		2880	48	0.244736	625.9111
2895	48.25	0.250023	363.7831		2895	48.25	0.244736	629.5821
2910	48.5	0.251318	367.5528		2910	48.5	0.244736	633.2531
2925 2940	48.75 49	0.252614 0.253909	371.342 375.1507		2925	48.75 49	0.244736 0.244736	636.9242 640.5952
2955	49.25	0.255205	378.9788		2940 2955	49.25	0.244736	644.2662
2970	49.23	0.255205	382.8263		2970	49.23	0.244736	647.9373
2985	49.75	0.257795	386.6932		2985	49.75	0.244736	651.6083
3000	50	0.259091	390.5795		3000	50	0.244736	655.2793
3015	50.25	0.260386	394.4853		3015	50.25	0.244736	658.9504
3030	50.5	0.261682	398.4106		3030	50.5	0.244736	662.6214
3045	50.75	0.262977	402.3552	3	3045	50.75	0.244736	666.2924
3060	51	0.264273	406.3193	3	3060	51	0.244736	669.9634
3075	51.25	0.265568	410.3028	3	3075	51.25	0.244736	673.6345
3090	51.5	0.266864	414.3058	3	3090	51.5	0.244736	677.3055
3105	51.75	0.268159	418.3282	3	3105	51.75	0.244736	680.9765
3120	52	0.269455	422.37		3120	52	0.244736	684.6476
3135	52.25	0.27075	426.4313		3135	52.25	0.244736	688.3186
3150	52.5	0.272045	430.5119		3150	52.5	0.244736	691.9896
3165	52.75	0.273341	434.612		3165	52.75	0.244736	695.6607
3180	53		438.7316		3180	53	0.244736	699.3317
3195	53.25	0.275932	442.8706		3195	53.25	0.244736	703.0027
3210	53.5 53.75	0.277227 0.278523	447.029 451.2068		3210	53.5 53.75	0.244736 0.244736	706.6738 710.3448
3225 3240	55.75 54	0.278523	451.2068		3225 3240	54	0.244736	710.3448
3255	54.25	0.281114	459.6208		3255	54.25	0.244736	717.6869
3270	54.5	0.282409	463.8569		3270	54.5	0.244736	721.3579
3285	54.75	0.283705	468.1125		3285	54.75	0.244736	725.0289
3300	55	0.285	472.3875		3300	55	0.244736	728.7
				3	3315	55.25	0.244736	732.371
				3	3330	55.5	0.244736	736.042
				3	3345	55.75	0.244736	739.7131
				3	3360	56	0.244736	743.3841
				3	3375	56.25	0.244736	747.0551
					3390	56.5	0.244736	750.7262
					3405	56.75	0.244736	754.3972
					3420	57	0.244736	758.0682
					3435	57.25	0.244736	761.7393
					3450	57.5	0.244736	765.4103
					3465 3480	57.75 58	0.244736 0.244736	769.0813 772.7524
					3495	58.25	0.244736	776.4234
					3510	58.5	0.244736	780.0944
					3525	58.75	0.244736	783.7655
					3540	59	0.244736	787.4365
					3555	59.25	0.244736	791.1075
				3	3570	59.5	0.244736	794.7786
				3	3585	59.75	0.244736	798.4496
				3	3600	60	0.244736	802.1206
				3	3615	60.25	0.244736	805.7917
					3630	60.5	0.244736	809.4627
					3645	60.75	0.244736	813.1337
					3660	61	0.244736	816.8048
					3675	61.25	0.244736	820.4758
					3690	61.5	0.244736	824.1468
					3705	61.75	0.244736	827.8179
					3720	62 62.25	0.244736 0.244736	831.4889 835.1599
				3	3735	02.25	0.244/36	033.1599

265,946

265.983

266.001

266.000

265.979

265.938

265.878

265.799

265.700

265.582

265,445

265.287

265.111

264.915

264.700

264.465

264.211

263.937

263.644

263.332

263.000

262.648

262.278

261.887

261.478

261.049

260.600

260.132

259.645

259.138

258.612

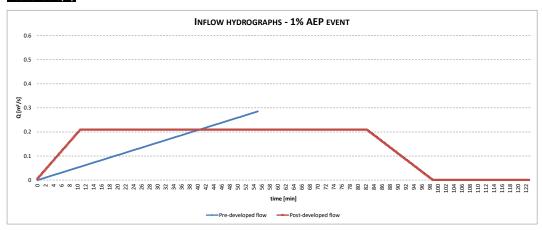
258.066

257.501

256.916

256.312

3750	62.5	0.244736	838.8309
3765	62.75	0.244736	842.502
3780	63	0.244736	846.173
3795	63.25	0.244736	849.844
3810	63.5	0.244736	853.5151
3825	63.75	0.244736	857.1861
3840	64	0.244736	860.8571
3855	64.25	0.244736	864.5282
3870	64.5	0.244736	868.1992
3885	64.75	0.244736	871.8702
3900	65	0.244736	875.5413
3915	65.25	0.244736	879.2123
3930	65.5	0.244736	882.8833
3945	65.75	0.244736	886.5544
3960	66	0.244736	890.2254
3975	66.25	0.241027	893.8408
3990	66.5	0.237319	897.4006
4005	66.75	0.233611	900.9048
4020	67	0.229903	904.3533
4035	67.25	0.226195	907.7462
4050	67.5	0.222487	911.0835
4065	67.75	0.218779	914.3652
4080	68	0.215071	917.5913
4095	68.25	0.211362	920.7617
4110	68.5	0.207654	923.8765
4125	68.75	0.203946	926.9357
4140	69	0.200238	929.9393
4155	69.25	0.19653	932.8873
4170	69.5	0.192822	935.7796
4185	69.75	0.189114	938.6163
4200	70	0.185406	941.3974
4215	70.25	0.181698	944.1228
4230	70.5	0.177989	946.7927
4245	70.75	0.174281	949,4069
4260	70.73	0.170573	951.9655
4275	71.25	0.166865	954.4685
4290	71.5	0.163157	956.9158
4305	71.75	0.159449	959.3076
4320	72	0.155741	961.6437
4335	72.25	0.152033	963.9242
4350	72.5	0.148325	966.149
4365	72.75	0.144616	968.3183
4380	73	0.140908	970.4319
4395	73.25	0.1372	972.4899
4410	73.5	0.133492	974.4923
4425	73.75	0.129784	976.4391
4440	74	0.126076	978.3302
4455	74.25	0.122368	980.1657
4470	74.5	0.11866	981.9456
4485	74.75	0.114952	983.6699
4500	75	0.111243	985.3385
4515	75.25	0.107535	986.9516
4530	75.5	0.103827	988.509
4545	75.75	0.100119	990.0107
4560	76	0.096411	991.4569
4575	76.25	0.092703	992.8475
4590	76.5	0.088995	994.1824
4605	76.75	0.085287	995.4617
4620	77	0.081579	996.6854
4635	77.25	0.001373	997.8534
4650	77.5	0.07787	998.9658
	77.75	0.074162	
4665			1000.023
4680	78	0.066746	1001.024
4695	78.25	0.063038	1001.969


4710	78.5	0.05933	1002.859
4725	78.75	0.055622	1003.694
4740	79	0.051914	1004.472
4755	79.25	0.048205	1005.195
4770	79.5	0.044497	1005.863
4785	79.75	0.040789	1006.475
4800	80	0.037081	1007.031
4815	80.25	0.033373	1007.532
4830	80.5	0.029665	1007.977
4845	80.75	0.025957	1008.366
4860	81	0.022249	1008.7
4875	81.25	0.018541	1008.978
4890	81.5	0.014832	1009.2
4905	81.75	0.011124	1009.367
4920	82	0.007416	1009.478
4935	82.25	0.003708	1009.534
4950	82.5	0	1009.534
4965	82.75	0	1009.534
4980	83	0	1009.534

Detention Volum	e - sizing - 19	% AEP event	- OPTION 4
-----------------	-----------------	-------------	------------

	Pre-de	veloped			Post-de	veloped		Det	tention tank
t [sec]	t [min]	Q [m³/s]	V [m³]	t [sec]	t [min]	Q [m ³ /s]	V [m³]		V [m³]
0	0	0	0	0	0	0	0		0
15	0.25	0.001295	0.019432	15	0.25	0.004755	0.071328		0.052
30	0.5	0.002591	0.058295	30	0.5	0.00951	0.213985		0.156
45	0.75	0.003886	0.116591	45	0.75	0.014266	0.42797		0.311
60	1	0.005182	0.194318	60	1	0.019021	0.713284		0.519
75	1.25	0.006477	0.291477	75	1.25	0.023776	1.069925		0.778
90	1.5	0.007773	0.408068	90	1.5	0.028531	1.497895		1.090
105 120	1.75 2	0.009068	0.544091	105 120	1.75 2	0.033287 0.038042	1.997194 2.567821		1.453 1.868
135	2.25	0.010364	0.874432	135	2.25	0.038042	3.209776		2.335
150	2.23	0.011035	1.06875	150	2.23	0.042757	3.923059		2.854
165	2.75	0.012333	1.2825	165	2.75	0.052307	4.707671		3.425
180	3	0.015545	1.515682	180	3		5.563612		4.048
195	3.25	0.016841	1.768295	195	3.25	0.061818	6.49088		4.723
210	3.5	0.018136	2.040341	210	3.5	0.066573	7.489477		5.449
225	3.75	0.019432	2.331818	225	3.75	0.071328	8.559402		6.228
240	4	0.020727	2.642727	240	4	0.076084	9.700656		7.058
255	4.25	0.022023	2.973068	255	4.25	0.080839	10.91324		7.940
270	4.5	0.023318	3.322841	270	4.5	0.085594	12.19715		8.874
285	4.75	0.024614	3.692045	285	4.75	0.090349	13.55239		9.860
300	5	0.025909	4.080682	300	5	0.095104	14.97895		10.898
315	5.25	0.027205	4.48875	315	5.25	0.09986	16.47685		11.988
330 345	5.5 5.75	0.0285 0.029795	4.91625 5.363182	330 345	5.5 5.75	0.104615 0.10937	18.04607 19.68663		13.130 14.323
345 360	6	0.029795	5.829545	360	6	0.10937	21.39851		15.569
375	6.25	0.031031	6.315341	375	6.25	0.114123	23.18171		16.866
390	6.5	0.032580	6.820568	390	6.5	0.123636	25.03625		18.216
405	6.75	0.033002	7.345227	405	6.75	0.128391	26.96212		19.617
420	7	0.036273	7.889318	420	7	0.133146	28.95931		21.070
435	7.25	0.037568	8.452841	435	7.25	0.137901	31.02783		22.575
450	7.5	0.038864	9.035795	450	7.5	0.142657	33.16768		24.132
465	7.75	0.040159	9.638182	465	7.75	0.147412	35.37886		25.741
480	8	0.041455	10.26	480	8	0.152167	37.66137		27.401
495	8.25	0.04275	10.90125	495	8.25	0.156922	40.01521		29.114
510	8.5	0.044045	11.56193	510	8.5	0.161678	42.44037		30.878
525	8.75	0.045341	12.24205	525	8.75	0.166433	44.93686 47.50468		32.695
540 555	9 9.25	0.046636 0.047932	13.66057	540 555	9 9.25	0.171188 0.175943	50.14383		34.563 36.483
570	9.5	0.047332	14.39898	570	9.5	0.180698	52.85431		38.455
585	9.75	0.050523	15.15682	585	9.75	0.185454	55.63612		40.479
600	10	0.051818	15.93409	600	10	0.190209	58.48925		42.555
615	10.25	0.053114	16.7308	615	10.25	0.194964	61.41371		44.683
630	10.5	0.054409	17.54693	630	10.5	0.199719	64.4095		46.863
645	10.75	0.055705	18.3825	645	10.75	0.204475	67.47662		49.094
660	11	0.057	19.2375	660	11	0.20923	70.61507		51.378
675	11.25	0.058295	20.11193	675	11.25	0.20923	73.75352		53.642
690	11.5	0.059591	21.0058	690	11.5	0.20923	76.89197		55.886
705	11.75	0.060886	21.91909	705	11.75	0.20923	80.03041		58.111
720	12	0.062182	22.85182	720	12	0.20923	83.16886		60.317
735	12.25	0.063477	23.80398	735	12.25	0.20923	86.30731		62.503
750 765	12.5 12.75	0.064773 0.066068	24.77557 25.76659	750 765	12.5 12.75	0.20923	89.44576 92.5842		64.670 66.818
780	13	0.067364	26.77705	780	13	0.20923	95.72265		68.946
795	13.25	0.068659	27.80693	795	13.25	0.20923	98.8611		71.054
810	13.5	0.069955	28.85625	810	13.5	0.20923	101.9995		73.143
825	13.75	0.07125	29.925	825	13.75	0.20923	105.138		75.213
840	14	0.072545	31.01318	840	14	0.20923	108.2764		77.263
855	14.25	0.073841	32.1208	855	14.25	0.20923	111.4149		79.294
870	14.5	0.075136	33.24784	870	14.5	0.20923	114.5533		81.305
885	14.75	0.076432	34.39432	885	14.75	0.20923	117.6918		83.297
900	15	0.077727	35.56023	900	15	0.20923	120.8302		85.270
915 930	15.25	0.079023	36.74557 37.95034	915 930	15.25 15.5	0.20923	123.9687 127.1071		87.223
930 945	15.5 15.75	0.080318	37.95034 39.17455	930 945	15.5 15.75	0.20923	127.1071 130.2456		89.157 91.071
945 960	16.75	0.081614	40.41818	945 960	16.75	0.20923	133.384		92.966
975	16.25	0.082909	41.68125	975	16.25	0.20923	136.5225		94.841
990	16.5	0.084203	42.96375	990	16.5	0.20923	139.6609		96.697
1005	16.75	0.086795	44.26568	1005	16.75	0.20923	142.7994		98.534
1020	17	0.088091	45.58705	1020	17	0.20923	145.9378		100.351
1035	17.25	0.089386	46.92784	1035	17.25	0.20923	149.0763		102.148

			Δt [sec]	15	
Q ₁₀₀ [m ³ /s]	0.285	Pre-developed	Q ₁₀₀ [m ³ /s]	0.209	Developed
Tc [min]	55.00	peak flow	Tc [min]	11.00	peak flow
Tc [sec]	3300		Tc [sec]	660	
	8.64E-05			0.000317	
Tc [min]			Tc [min]	82.50	end of storm
Tc [sec]			Tc [sec]	4950	
T [min]	99	end simulation	T [min]	99	end simulation
T [sec]	5940		T [sec]	5940	
	4.8E-05			0.000211	

Detention volume [m³] 184

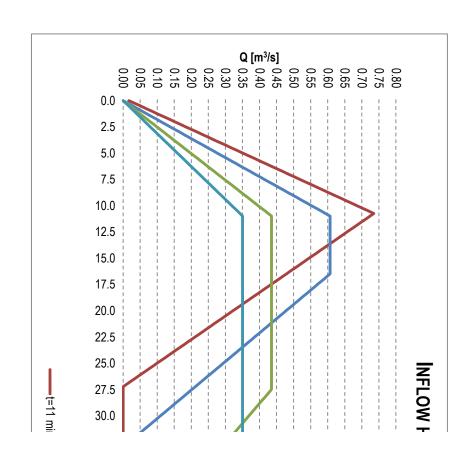
1050								
	17.5	0.090682	48.28807	1050	17.5	0.20923	152.2147	103.927
1065	17.75	0.091977	49.66773	1065	17.75	0.20923	155.3532	105.685
1080	18	0.093273	51.06682	1080	18	0.20923	158.4916	107.425
1095	18.25	0.094568		1095	18.25	0.20923	161.63	109.145
1110	18.5	0.095864	53.9233	1110	18.5	0.20923	164.7685	110.845
1125	18.75	0.097159		1125	18.75	0.20923	167.9069	112.526
1140	19	0.098455		1140	19	0.20923	171.0454	114.188
1155	19.25	0.09975	58.35375	1155	19.25	0.20923	174.1838	115.830
1170	19.5	0.101045		1170	19.5	0.20923	177.3223	117.453
1185	19.75	0.102341		1185	19.75	0.20923	180,4607	119.056
1200	20	0.103636		1200	20	0.20923	183.5992	120.640
1215	20.25	0.104932		1215	20.25	0.20923	186.7376	122.205
1230	20.5	0.106227		1230	20.5	0.20923	189.8761	123.750
1245	20.75	0.100227		1245	20.75		193.0145	125.275
1260	20.73	0.107323		1260	20.73	0.20923	196.153	126.781
1275	21.25	0.108818		1275	21.25		199.2914	128.268
1275	21.25	0.110114		1275	21.25	0.20923	202.4299	129.735
1305	21.75	0.112705	74.385	1305	21.75	0.20923	205.5683	131.183
1320	22	0.114	76.095	1320	22	0.20923	208.7068	132.612
1335	22.25	0.115295		1335	22.25	0.20923	211.8452	134.021
1350	22.5	0.116591	79.5733	1350	22.5	0.20923	214.9837	135.410
1365	22.75	0.117886		1365	22.75	0.20923	218.1221	136.781
1380	23	0.119182		1380	23	0.20923	221.2606	138.131
1395	23.25	0.120477		1395	23.25	0.20923	224.399	139.463
1410	23.5	0.121773		1410	23.5	0.20923	227.5374	140.774
1425	23.75	0.123068		1425	23.75	0.20923	230.6759	142.067
1440	24	0.124364		1440	24	0.20923	233.8143	143.340
1455	24.25	0.125659		1455	24.25	0.20923	236.9528	144.593
1470	24.5	0.126955	94.26375	1470	24.5	0.20923	240.0912	145.827
1485	24.75	0.12825	96.1875	1485	24.75	0.20923	243.2297	147.042
1500	25	0.129545		1500	25	0.20923	246.3681	148.237
1515	25.25	0.130841	100.0933	1515	25.25	0.20923	249.5066	149.413
1530	25.5	0.132136	102.0753	1530	25.5	0.20923	252.645	150.570
1545	25.75	0.133432	104.0768	1545	25.75	0.20923	255.7835	151.707
1560	26	0.134727	106.0977	1560	26	0.20923	258.9219	152.824
1575	26.25	0.136023	108.1381	1575	26.25	0.20923	262.0604	153.922
1590	26.5	0.137318		1590	26.5	0.20923	265.1988	155.001
1605	26.75	0.138614	112.277	1605	26.75	0.20923	268.3373	156.060
1620	27	0.139909	114.3757	1620	27	0.20923	271.4757	157.100
1635	27.25	0.141205	116.4938	1635	27.25	0.20923	274.6142	158.120
1650	27.5	0.1425	118.6313	1650	27.5	0.20923	277.7526	159.121
1665	27.75	0.143795	120.7882	1665	27.75	0.20923	280.8911	160.103
1680	28	0.145091	122.9645	1680	28	0.20923	284.0295	161.065
1695	28.25	0.146386	125.1603	1695	28.25	0.20923	287.168	162.008
1710	28.5	0.147682	127.3756	1710	28.5	0.20923	290.3064	162.931
1725	28.75	0.148977		1725	28.75	0.20923	293.4448	163.835
1740	29			1740	29	0.20923	296.5833	164.719
1755		0.150273						
1770	29.25	0.150273 0.151568			29.25	0.20923	299.7217	
		0.151568	134.1378	1755				165.584
1785	29.5	0.151568 0.152864	134.1378 136.4308	1755 1770	29.5	0.20923	302.8602	165.584 166.429
1785 1800	29.5 29.75	0.151568 0.152864 0.154159	134.1378 136.4308 138.7432	1755 1770 1785	29.5 29.75	0.20923 0.20923	302.8602 305.9986	165.584 166.429 167.255
1800	29.5 29.75 30	0.151568 0.152864 0.154159 0.155455	134.1378 136.4308 138.7432 141.075	1755 1770 1785 1800	29.5 29.75 30	0.20923 0.20923 0.20923	302.8602 305.9986 309.1371	165.584 166.429 167.255 168.062
1800 1815	29.5 29.75 30 30.25	0.151568 0.152864 0.154159 0.155455 0.15675	134.1378 136.4308 138.7432 141.075 143.4263	1755 1770 1785 1800 1815	29.5 29.75 30 30.25	0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755	165.584 166.429 167.255 168.062 168.849
1800	29.5 29.75 30	0.151568 0.152864 0.154159 0.155455	134.1378 136.4308 138.7432 141.075 143.4263 145.7969	1755 1770 1785 1800	29.5 29.75 30	0.20923 0.20923 0.20923	302.8602 305.9986 309.1371	165.584 166.429 167.255 168.062
1800 1815 1830 1845	29.5 29.75 30 30.25 30.5	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187	1755 1770 1785 1800 1815 1830	29.5 29.75 30 30.25 30.5	0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414	165.584 166.429 167.255 168.062 168.849 169.617
1800 1815 1830 1845 1860	29.5 29.75 30 30.25 30.5 30.75 31	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341 0.160636	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966	1755 1770 1785 1800 1815 1830 1845	29.5 29.75 30 30.25 30.5 30.75 31	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094
1800 1815 1830 1845 1860 1875	29.5 29.75 30 30.25 30.5 30.75 31 31.25	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341 0.160636 0.161932	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256	1755 1770 1785 1800 1815 1830 1845 1860	29.5 29.75 30 30.25 30.5 30.75 31 31.25	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094
1800 1815 1830 1845 1860 1875 1890	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341 0.160636 0.161932 0.163227	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474	1755 1770 1785 1800 1815 1830 1845 1860 1875	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804
1800 1815 1830 1845 1860 1875 1890 1905	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341 0.160636 0.161932 0.163227 0.164523	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.804 171.804 173.164
1800 1815 1830 1845 1860 1875 1890 1905	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75 32	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341 0.160636 0.161932 0.163227 0.164523 0.165818	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75 32	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 172.494 173.164
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75 32 32.25	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341 0.160636 0.161932 0.163227 0.164523 0.165818 0.167114	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75 32 32.25	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 172.494 173.164 173.816
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.75 32 32.25 32.5	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341 0.160636 0.161932 0.163227 0.164523 0.165818 0.167114 0.168409	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920 1935	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75 32 32.25 32.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 172.494 173.164 173.816 174.447
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.75 32 32.25 32.5 32.75	0.151568 0.152864 0.154159 0.155455 0.15675 0.159341 0.160636 0.161932 0.163227 0.164523 0.165818 0.167114 0.168409 0.169705	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 168.0075	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75 32 32.25 32.25 32.75	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 343.66	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 172.494 173.164 173.816 174.447 175.060
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980	29.5 29.75 30 30.25 30.75 31.3 31.25 31.5 31.75 32 32.25 32.25 32.75 33	0.151568 0.152864 0.152455 0.155455 0.155455 0.159341 0.160636 0.161932 0.163227 0.164523 0.165818 0.167114 0.168905 0.169705	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 168.0075 170.5725	1755 1770 1785 1800 1815 1830 1845 1860 1975 1990 1995 1995 1990	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75 32 32.25 32.5 32.75	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 343.66 346.7985	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 173.164 173.164 173.166 174.447 175.060 175.653
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995	29.5 29.75 30 30.25 30.75 31.3 31.25 31.5 31.75 32 32.25 32.25 32.75 33 33.25	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.160936 0.161932 0.163227 0.164523 0.165818 0.167114 0.168409 0.169705 0.171	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 168.0075 170.5725 173.1569	1755 1770 1785 1800 1815 1830 1845 1860 1975 1980 1995 1990 1995	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.75 32 32.25 32.25 32.75 33.33 33.25	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 343.66 344.7685 349.9369	165.584 166.429 167.255 168.062 169.617 170.365 171.094 171.804 172.494 173.164 173.816 174.447 175.060 175.653 176.226
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010	29.5 29.75 30 30.25 30.75 31 31.25 31.75 32 32.25 32.5 32.75 33 33.25 33.5	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.16932 0.160636 0.161932 0.163227 0.164523 0.165818 0.167114 0.168409 0.169705 0.171 0.172295 0.173591	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 168.0075 170.5725 173.1569 175.7608	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.75 32 32.25 32.25 32.75 33 33.25 33.35	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 343.66 346.7985 349.9369 353.0754	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 172.494 173.164 173.816 174.447 175.060 175.653 176.226 176.780
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010 2025	29.5 29.75 30 30.25 30.75 31.3 31.25 31.75 32 32.25 32.75 33 33.25 33.35 33.75	0.151568 0.152864 0.152459 0.155459 0.155455 0.159341 0.16036 0.161932 0.16323 0.164523 0.165818 0.167114 0.168409 0.169705 0.171 0.172595 0.173896	134.1378 136.4308 136.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 168.0075 170.5725 173.1569 175.7608 178.3841	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1960 1995 2010	29.5 29.75 30 30.25 30.5 30.75 31.3 31.25 31.5 32.75 32.75 32.75 33.35 33.25 33.5 33.75	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.9690 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 346.7985 349.9369 353.0754 353.0754	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 173.164 173.164 173.816 174.447 175.060 175.653 176.226 176.780 177.315
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010 2025 2040	29.5 29.75 30 30.25 30.5 30.75 31.3 31.75 32 32.25 32.75 33 33.25 33.75 33.75	0.151568 0.152864 0.154159 0.155455 0.15675 0.15675 0.159341 0.160636 0.161932 0.163227 0.164523 0.165814 0.168409 0.169705 0.171 0.172295 0.173591 0.174886 0.176182	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 155.474 157.9418 166.4291 166.9358 165.4619 168.0075 170.5725 173.1569 175.7608 178.3841 188.10268	1755 1770 1785 1800 1815 1830 1845 1860 1975 1980 1995 1920 1935 1980 1995 1980 1995	29.5 29.75 30 30.25 30.5 30.75 31.5 31.5 32.75 32.25 32.25 32.5 32.75 33.35 33.5 33.75	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 346.7985 349.9369 353.0754 356.2138 359.3522	165.584 166.429 167.255 168.062 169.617 170.365 171.094 171.804 172.494 173.164 173.816 174.447 175.060 175.653 176.226 176.780 177.315
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010 2025 2040 2055	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.5 31.75 32 32.25 32.5 32.5 33.5 33.5 33.5 33.4 34.25	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341 0.16036 0.161932 0.163227 0.164523 0.165818 0.167114 0.168409 0.17910 0.174886 0.176182 0.174886	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 168.0075 170.5725 173.1569 175.7608 178.3841 181.0268	1755 1770 1785 1800 1815 1830 1845 1860 1905 1920 1935 1950 1965 1980 1995 2010 2025 2040 2055	29.5 29.75 30 30.25 30.5 30.75 31.25 31.75 32.25 32.25 32.37 33.25 33.5 33.75 34 34.25	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 343.66 346.7985 349.9369 353.0754 356.2138 359.3522 362.4907	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 173.164 173.816 174.447 175.060 175.653 176.226 176.780 177.315 177.830 178.325 178.325
1800 1815 1830 1845 1860 1875 1890 1902 1935 1950 1965 1980 1995 2010 2025 2040 2055 2070	29.5 29.75 30 30.25 30.5 30.75 31.31.25 31.75 32.25 32.25 32.25 32.75 33 33.25 33.75 34.425 34.5	0.151568 0.152864 0.154159 0.155455 0.15675 0.15675 0.159341 0.160636 0.161932 0.163227 0.164523 0.165818 0.167114 0.168409 0.169705 0.171 0.172295 0.173591 0.174886 0.176182 0.176182 0.177877	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 170.5725 173.1569 175.7608 175.7608 178.3841 181.0268 183.689	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010 2025 2040 2055 2070	29.5 29.75 30.5 30.5 30.75 31.5 31.5 32.25 32.25 32.75 32.35 33.25 33.5 33.75 34 34.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 342.7985 349.9369 353.0754 356.2138 359.3522 362.4907 365.6291	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.804 171.804 173.164 173.164 173.816 174.447 175.060 175.653 176.226 176.780 177.315 177.325 178.802 179.259
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010 2025 2040 2055 2070 2085	29.5 29.75 30 30.25 30.5 30.5 31.5 31.5 31.5 32.25 32.25 32.25 32.75 33.3 33.25 33.75 34 34.25 34.75	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.158045 0.169324 0.1663227 0.164523 0.165818 0.167114 0.168409 0.172925 0.173591 0.17295 0.173591 0.174882 0.1761882 0.1761882	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 178.1569 179.725 173.1569 178.5608 178.3841 181.0268 183.639 186.3976 188.3776	1755 1770 1785 1800 1815 1830 1845 1860 1905 1920 1935 1950 1965 1980 2010 2025 2070 2085	29.5 29.75 30 30.25 30.5 30.75 31.31.25 31.75 32 32.25 32.25 32.25 33.25 33.25 33.35 33.35 34.34.25 34.25	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 343.66 346.7985 349.9369 353.0754 356.2138 359.3522 362.4907 365.6291	165.584 166.429 167.255 168.062 169.617 170.365 171.094 171.804 172.494 173.164 173.166 175.060 175.653 176.226 176.780 177.315 177.835 178.325 178.802 179.559
1800 1815 1830 1845 1860 1875 1890 1905 1920 1950 1965 1980 2010 2025 2040 2055 2070 2085 2100	29.5 29.75 30 30.25 30.5 30.75 31.25 31.75 32 32.25 32.75 33.35 33.75 34 34.25 34.5 34.75 35	0.151568 0.152864 0.152459 0.155455 0.15675 0.158045 0.15803 0.160036 0.161932 0.163227 0.164523 0.165818 0.167114 0.168409 0.16970 0.171 0.172295 0.173591 0.174886 0.176182 0.176182 0.178773 0.180068	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 160.4291 162.9358 165.4619 168.0075 170.5725 173.1569 178.3841 181.0268 183.689 186.3706 189.0716	1755 1770 1785 1800 1815 1830 1845 1860 1975 1920 1935 1950 1955 2010 2025 2040 2085 2070 2085 2100	29.5 29.75 30.5 30.5 30.75 31.31.25 31.75 32.32.25 32.75 33.75 33.75 34.75 34.75 34.75	0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 346.7985 349.9369 353.0754 356.2138 359.3522 362.4907 368.7676 371.906	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 173.164 173.164 173.166 175.060 175.653 176.226 176.780 177.315 177.830 178.325 178.802 179.259 179.696 180.114
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010 2025 2040 2055 2070 2085 2100 2115	29.5 29.75 30 30.25 30.75 31.31.5 31.75 32.25 32.25 32.5 33.25 33.5 33.25 33.75 34 34.25 34.75 35.35	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.15675 0.158045 0.160636 0.161932 0.164523 0.165818 0.167114 0.168409 0.169705 0.171 0.172295 0.173591 0.174876 0.176182 0.177477 0.178773 0.180068 0.181364 0.182659	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 170.5725 173.1569 175.7608 175.7608 178.3841 181.0268 183.689 186.3706 189.0716 191.792 194.5319	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 2025 2040 2055 2070 2085 2100 2115	29.5 29.75 30 30.25 30.5 30.75 31.3 31.25 31.5 32.25 32.25 32.5 32.75 33.75 33.75 34 34.25 34.75 35.25 34.75	0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 343.66 346.7985 349.9369 353.0754 356.2138 359.3522 362.4907 365.6291 368.7676 371.904	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 173.164 173.816 174.447 175.060 175.653 176.226 176.780 177.315 177.830 178.325 178.802 179.259 179.696 180.114
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1960 1995 2010 2025 2040 2055 2070 2085 2100 2115 2130	29.5 29.75 30 30.25 30.75 30.75 31.31.25 31.75 32.32.25 32.25 32.75 33.35 33.25 33.75 34.25 34.25 34.75 35.35 35.35	0.151568 0.152864 0.152459 0.155455 0.15675 0.158045 0.158036 0.16932 0.163227 0.164523 0.165218 0.167114 0.168409 0.17717 0.172295 0.174886 0.176182 0.1774877 0.178773 0.180068 0.181364 0.182659	134.1378 136.4308 138.7432 141.075 143.4263 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 168.0075 170.5725 173.1569 173.1569 173.168 183.689 186.3706 183.0706 183.0706 191.792 194.5319 194.5319	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010 2025 2040 2055 2070 2085 2100 2115	29.5 29.75 30 30.25 30.75 31.31.25 31.5 31.75 32.25 32.25 32.75 33.35 33.25 33.75 34.75 34.75 34.75 34.5 34.75 35.35.5	0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 343.66 346.7985 349.9369 353.0754 356.2138 359.3522 362.4907 365.6291 368.7676 371.906	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 173.164 173.164 173.4447 175.060 175.653 176.226 176.780 177.315 177.830 178.325 178.802 179.259 179.696 180.114 180.513
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 2010 2025 2040 2055 2070 2055 2100 2115 2130	29.5 29.75 30 30.25 30.75 31.31.5 31.75 32 32.25 32.25 32.75 33.35 33.75 34.5 34.75 34.5 34.75 35.25 35.25 35.25 35.25	0.151568 0.152864 0.154159 0.155455 0.15675 0.158045 0.159341 0.160636 0.161932 0.163227 0.164523 0.165818 0.167114 0.168409 0.169705 0.1712295 0.173591 0.174886 0.176182 0.174873 0.18747 0.18747 0.18068 0.181364 0.182659 0.18255	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 162.9358 165.4619 168.0075 170.5725 173.1569 175.7608 175.7608 175.7608 178.3841 181.0268 183.689 186.3706 189.0716 1991.792 194.5319 197.2913 200.07	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1950 2010 2025 2040 2055 2070 2085 2100 2115 2130	29.5 29.75 30 30.25 30.5 30.75 31 31.25 31.75 32 32.25 32.75 33.25 33.25 33.25 33.4 34.25 34.75 35.25 35.25 35.25	0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 346.7985 340.5216 346.7985 353.0754 356.2138 359.3522 362.4907 365.6291 368.7676 371.906 375.0445 378.1829	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 173.164 173.164 173.165 174.447 175.060 175.653 176.226 176.780 177.315 177.315 177.325 178.802 179.259 179.696 180.114 180.513 180.513 180.892 181.251
1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1960 1995 2010 2025 2040 2055 2070 2085 2100 2115 2130	29.5 29.75 30 30.25 30.75 30.75 31.31.25 31.75 32.32.25 32.25 32.75 33.35 33.25 33.75 34.25 34.25 34.75 35.35 35.35	0.151568 0.152864 0.152459 0.155455 0.15675 0.158045 0.158036 0.16932 0.163227 0.164523 0.165218 0.167114 0.168409 0.17717 0.172295 0.174886 0.176182 0.1774877 0.178773 0.180068 0.181364 0.182659	134.1378 136.4308 138.7432 141.075 143.4263 145.7969 148.187 150.5966 153.0256 155.474 157.9418 160.4291 168.0075 170.5725 173.1569 175.7608 178.3841 181.0268 183.689 186.3706 189.0716 191.792 194.5319 197.2913 200.07	1755 1770 1785 1800 1815 1830 1845 1860 1875 1890 1905 1920 1935 1950 1965 1980 1995 2010 2025 2040 2055 2070 2085 2100 2115	29.5 29.75 30 30.25 30.75 31.31.25 31.5 31.75 32.25 32.25 32.75 33.35 33.25 33.75 34.75 34.75 34.75 34.5 34.75 35.35.5	0.20923 0.20923	302.8602 305.9986 309.1371 312.2755 315.414 318.5524 321.6909 324.8293 327.9678 331.1062 334.2447 337.3831 340.5216 343.66 346.7985 349.9369 353.0754 356.2138 359.3522 362.4907 365.6291 368.7676 371.906	165.584 166.429 167.255 168.062 168.849 169.617 170.365 171.094 171.804 173.164 173.164 173.4447 175.060 175.653 176.226 176.780 177.315 177.830 178.325 178.802 179.259 179.696 180.114 180.513

2400	26.5	0.400436	200 5220	2400	20.5	0.20022	200 7267	402.244
2190	36.5	0.189136		2190	36.5	0.20923	390.7367	182.214
2205	36.75	0.190432	211.3793	2205	36.75	0.20923	393.8752	182.496
2220	37	0.191727	214.2552	2220	37	0.20923	397.0136	182.758
2235	37.25	0.193023	217.1506	2235	37.25	0.20923	400.1521	183.001
2250	37.5	0.194318	220.0653	2250	37.5	0.20923	403,2905	183.225
2265	37.75	0.195614	222,9995	2265	37.75	0.20923	406.429	183.429
2280	38	0.196909		2280	38	0.20923	409.5674	183.614
2295	38.25	0.198205	228.9263	2295	38.25	0.20923	412.7059	183.780
2310	38.5	0.1995	231.9188	2310	38.5	0.20923	415.8443	183.926
2325	38.75	0.200795	234.9307	2325	38.75	0.20923	418.9827	184.052
2340	39	0.202091	237.962	2340	39	0.20923	422.1212	184.159
2355	39.25	0.203386	241.0128	2355	39.25	0.20923	425.2596	184.247
2370	39.5	0.204682	244.0831	2370	39.5	0.20923	428.3981	184.315
2385	39.75	0.205977	247.1727	2385	39.75	0.20923	431.5365	184.364
2400	40	0.207273	250.2818	2400	40	0.20923	434.675	184.393
2415	40.25	0.207273	253.4103	2415	40.25	0.20923	437.8134	184.403
2430	40.5	0.209864	256.5583	2430	40.5	0.20923	440.9519	184.394
2445	40.75	0.211159	259.7257	2445	40.75	0.20923	444.0903	184.365
2460	41	0.212455	262.9125	2460	41	0.20923	447.2288	184.316
2475	41.25	0.21375	266.1188	2475	41.25	0.20923	450.3672	184.248
2490	41.5	0.215045	269.3444	2490	41.5	0.20923	453.5057	184.161
2505	41.75	0.216341	272.5895	2505	41.75	0.20923	456,6441	184.055
2520	42	0.217636	275.8541	2520	42	0.20923	459.7826	183.928
2535	42.25	0.218932	270 1381	2535	42.25	0.20923	462.921	183.783
2550	42.5	0.220227		2550	42.5	0.20923	466.0595	183.618
2565	42.75	0.220227			42.75		469.1979	
				2565		0.20923		183.434
2580	43	0.222818		2580	43	0.20923	472.3364	183.230
2595	43.25	0.224114		2595	43.25	0.20923	475.4748	183.007
2610	43.5	0.225409	295.8494	2610	43.5	0.20923	478.6133	182.764
2625	43.75	0.226705	299.25	2625	43.75	0.20923	481.7517	182.502
2640	44	0.228	302.67	2640	44	0.20923	484.8901	182,220
2655	44.25	0.229295		2655	44.25	0.20923	488.0286	181.919
2670	44.5	0.230591	309.5683	2670	44.5	0.20923	491.167	181.599
2685	44.75	0.231886	313.0466	2685	44.75	0.20923	494.3055	181.259
2700	44.73	0.233182	316.5443	2700	44.73	0.20923	497.4439	180.900
2715	45.25	0.234477	320.0615	2715	45.25	0.20923	500.5824	180.521
2730	45.5	0.235773	323.5981	2730	45.5	0.20923	503.7208	180.123
2745	45.75	0.237068	327.1541	2745	45.75	0.20923	506.8593	179.705
2760	46	0.238364	330.7295	2760	46	0.20923	509.9977	179.268
2775	46.25	0.239659	334.3244	2775	46.25	0.20923	513.1362	178.812
2790	46.5	0.240955	337.9388	2790	46.5	0.20923	516.2746	178.336
2805	46.75	0.24225	341.5725	2805	46.75	0.20923	519.4131	177.841
2820	47	0.243545	345.2257	2820	47	0.20923	522.5515	177.326
2835	47.25	0.244841		2835	47.25	0.20923	525.69	176.792
2850	47.5	0.246136	352.5903	2850	47.5	0.20923	528.8284	176.238
2865	47.75	0.247432		2865	47.75	0.20923	531.9669	175.665
2880	48	0.248727	360.0327	2880	48	0.20923	535.1053	175.073
2895	48.25	0.250023		2895	48.25	0.20923	538.2438	174.461
2910	48.5	0.251318	367.5528	2910	48.5	0.20923	541.3822	173.829
2925	48.75	0.252614	371.342	2925	48.75	0.20923	544.5207	173.179
2940	49	0.253909	375.1507	2940	49	0.20923	547.6591	172.508
2955	49.25	0.255205	378.9788	2955	49.25	0.20923	550,7975	171.819
2970	49.5	0.2565	382.8263	2970	49.5	0.20923	553.936	171.110
2985	49.75	0.257795	386.6932	2985	49.75	0.20923	557.0744	170.381
3000	50	0.259091	390.5795	3000	50	0.20923	560.2129	169.633
	50.25	0.260386	394.4853		50.25	0.20923	563.3513	
3015				3015				168.866
3030	50.5	0.261682	398.4106	3030	50.5	0.20923	566.4898	168.079
3045	50.75	0.262977	402.3552	3045	50.75	0.20923	569.6282	167.273
3060	51	0.264273	406.3193	3060	51	0.20923	572.7667	166.447
3075	51.25	0.265568	410.3028	3075	51.25	0.20923	575.9051	165.602
3090	51.5	0.266864	414.3058	3090	51.5	0.20923	579.0436	164.738
3105	51.75	0.268159	418.3282	3105	51.75	0.20923	582.182	163.854
3120	52	0.269455	422.37	3120	52	0.20923	585.3205	162.950
3135	52.25	0.27075	426.4313	3135	52.25	0.20923	588.4589	162.028
3150	52.25	0.27075		3150	52.25	0.20923	591.5974	161.085
3165	52.75	0.273341	434.612	3165	52.75	0.20923	594.7358	160.124
3180	53	0.274636	438.7316	3180	53	0.20923	597.8743	159.143
3195	53.25	0.275932		3195	53.25	0.20923	601.0127	158.142
3210	53.5	0.277227	447.029	3210	53.5	0.20923	604.1512	157.122
3225	53.75	0.278523	451.2068	3225	53.75	0.20923	607.2896	156.083
3240	54	0.279818	455.4041	3240	54	0.20923	610.4281	155.024
3255	54.25	0.281114	459.6208	3255	54.25	0.20923	613.5665	153.946
3270	54.5	0.282409	463.8569	3270	54.5	0.20923	616.7049	152.848
3285	54.75	0.283705	468.1125	3285	54.75	0.20923	619.8434	151.731
3300	55	0.285	472.3875	3300	55	0.20923	622.9818	150.594
3300	22	0.203	-,, 2.30, 3	3315	55.25	0.20923	626.1203	130.334
				2212	33.23	0.20923	020.1203	

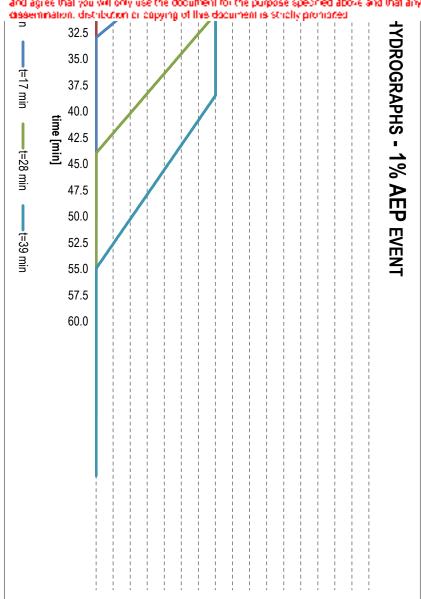
3330	55.5	0.20923	629.2587
3345	55.75	0.20923	632.3972
3360	56	0.20923	635.5356
3375	56.25	0.20923	638.6741
5575	30.23	0.20323	
3390	56.5	0.20923	641.8125
3405	56.75	0.20923	644.951
3420	57	0.20923	648.0894
3435	57.25	0.20923	651.2279
3450	57.5	0.20923	654.3663
3465	57.75	0.20923	657.5048
3480	58	0.20923	660.6432
3495		0.20923	
	58.25		663.7817
3510	58.5	0.20923	666.9201
3525	58.75	0.20923	670.0586
3540	59	0.20923	673.197
3555	59.25	0.20923	676.3354
3570	59.5	0.20923	679.4739
3585	59.75	0.20923	682.6123
3600	60	0.20923	685.7508
3615	60.25	0.20923	688.8892
3630	60.5	0.20923	692.0277
3645	60.75	0.20923	695.1661
3660	61	0.20923	698.3046
3675	61.25	0.20923	701.443
3690	61.5	0.20923	704.5815
3705	61.75	0.20923	707.7199
3720	62	0.20923	710.8584
3735	62.25	0.20923	713.9968
3750	62.5	0.20923	717.1353
3765	62.75	0.20923	720.2737
3780	63	0.20923	723.4122
3795		0.20923	726.5506
	63.25		
3810	63.5	0.20923	729.6891
3825	63.75	0.20923	732.8275
3840	64	0.20923	735.966
3855	64.25	0.20923	739.1044
3870	64.5	0.20923	742.2428
3885	64.75	0.20923	745.3813
3900	65	0.20923	748.5197
3915	65.25	0.20923	
5515			751.6582
3930	65.5	0.20923	754.7966
3945	65.75	0.20923	757.9351
3960	66	0.20923	761.0735
3975			
	66.25	0.20923	764.212
3990	66.5	0.20923	767.3504
4005	66.75	0.20923	770.4889
4020	67	0.20923	773.6273
4035			
	67.25	0.20923	776.7658
4050	67.5	0.20923	779.9042
4065	67.75	0.20923	783.0427
4080	68		
			786 1811
4005		0.20923	786.1811
4095	68.25	0.20923	789.3196
4110	68.25 68.5	0.20923 0.20923	789.3196 792.458
	68.25	0.20923	789.3196 792.458 795.5965
4110	68.25 68.5	0.20923 0.20923 0.20923	789.3196 792.458 795.5965
4110 4125 4140	68.25 68.5 68.75 69	0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349
4110 4125 4140 4155	68.25 68.5 68.75 69 69.25	0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734
4110 4125 4140 4155 4170	68.25 68.5 68.75 69 69.25 69.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118
4110 4125 4140 4155 4170 4185	68.25 68.5 68.75 69 69.25 69.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502
4110 4125 4140 4155 4170	68.25 68.5 68.75 69 69.25 69.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118
4110 4125 4140 4155 4170 4185 4200	68.25 68.5 68.75 69 69.25 69.5 69.75	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887
4110 4125 4140 4155 4170 4185 4200 4215	68.25 68.5 68.75 69 69.25 69.5 69.75 70	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271
4110 4125 4140 4155 4170 4185 4200 4215 4230	68.25 68.5 68.75 69 69.25 69.5 69.75 70 70.25 70.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245	68.25 68.5 68.75 69 69.25 69.5 69.75 70 70.25 70.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704
4110 4125 4140 4155 4170 4185 4200 4215 4230	68.25 68.5 68.75 69 69.25 69.5 69.75 70 70.25 70.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260	68.25 68.5 68.75 69 69.25 69.5 69.75 70 70.25 70.75 71	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275	68.25 68.5 68.75 69 69.25 69.5 69.75 70 70.25 70.75 71 71.25	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290	68.25 68.5 68.75 69 69.25 69.75 70 70.25 70.5 70.75 71 71.25 71.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 830.1194
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290 4305	68.25 68.5 68.75 69 69.25 69.5 69.75 70 70.25 70.75 71 71.25 71.5 71.75	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 833.2578
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290	68.25 68.5 68.75 69 69.25 69.75 70 70.25 70.5 70.75 71 71.25 71.5	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 830.1194
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290 4305	68.25 68.5 68.75 69.25 69.25 69.75 70.5 70.75 71.25 71.25 71.75	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 833.2578
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290 4305 4320 4335	68.25 68.5 68.75 69.5 69.25 70.70 70.25 70.5 71.71.25 71.5 71.75 72.72.25	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 830.1194 833.2578 836.3963 839.5347
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290 4305 4320 4335 4350	68.25 68.5 68.75 69.25 69.25 69.75 70.70 70.25 70.75 71.71.75 72.72.25 72.25	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 830.1194 833.2578 836.3963 839.5347 842.6732
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290 4305 4320 4335 4350 4365	68.25 68.5 68.75 69.69.25 69.75 70.70.25 70.75 71.71.25 71.75 72.72.25 72.25	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.6656 820.704 823.8425 826.9809 833.2578 836.3963 839.5347 842.6732 845.8116
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290 4305 4320 4335 4350	68.25 68.5 68.75 69.5 69.25 69.75 70.70.5 70.75 71.25 71.5 71.75 72.72.5 72.73	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 830.1194 833.2578 836.3963 839.5347 842.6732
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290 4305 4320 4335 4350 4365	68.25 68.5 68.75 69.5 69.25 69.75 70.70.5 70.75 71.25 71.5 71.75 72.72.5 72.73	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 823.8425 826.9809 830.1194 833.2578 836.3963 839.5347 842.6732 845.8116 848.9501
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290 4305 4320 4335 4350 4365 4380 4395	68.25 68.5 68.75 69 69.25 69.5 70.25 70.5 70.75 71.25 71.75 72 72.25 72.75 73.325	0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 823.8425 823.8425 833.2578 836.3963 839.5347 845.8116 848.9501 848.9501
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4290 4305 4320 4335 4350 4368 4380 4395 4410	68.25 68.5 69.5 69.5 69.75 70.5 70.75 71.5 71.5 71.5 72.72.25 72.75 73.73.73.73.73.73.73.73.73.73.73.73.73.7	0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 823.8425 823.8425 823.8425 823.8425 823.8425 823.8425 823.8425 845.8116 848.9501 848.9501 852.0885 855.227
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4305 4305 4305 4305 4350 4365 4380 4395 4380 4395 4410 4425	68.25 68.5 68.75 69 69.5 69.5 70.25 70.5 70.75 71.75 71.75 72.25 72.75 73.5 73.5 73.5 73.5	0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 833.2578 836.3963 839.5347 842.6732 845.8116 848.9501 855.257
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4305 4305 4305 4305 4305 4305 4305 430	68.25 68.75 69.5 69.5 69.5 70.70.25 70.75 71.71.5 71.75 72.72.25 72.75 73.75 73.75 73.75	0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 830.1194 833.2578 836.3963 839.5347 842.6732 845.8116 848.9501 852.0885 855.227 858.3664
4110 4125 4140 4155 4170 4185 4200 4215 4230 4245 4260 4275 4305 4305 4305 4305 4350 4365 4380 4395 4380 4395 4410 4425	68.25 68.5 68.75 69 69.5 69.5 70.25 70.5 70.75 71.75 71.75 72.25 72.75 73.5 73.5 73.5 73.5	0.20923 0.20923	789.3196 792.458 795.5965 798.7349 801.8734 805.0118 808.1502 811.2887 814.4271 817.5656 820.704 823.8425 826.9809 833.2578 836.3963 839.5347 842.6732 845.8116 848.9501 855.257

4470	74.5	0.20923	867.7808
4485	74.75	0.20923	870.9192
4500	75	0.20923	874.0576
4515	75.25	0.20923	877.1961
4530	75.5	0.20923	880.3345
4545	75.75	0.20923	883.473
4560	76	0.20923	886.6114
4575	76.25	0.20923	889.7499
4590	76.5	0.20923	892.8883
4605	76.75	0.20923	896.0268
4620	77	0.20923	899.1652
4635	77.25	0.20923	902.3037
4650	77.5	0.20923	905.4421
4665	77.75	0.20923	908.5806
	78		
4680		0.20923	911.719
4695	78.25	0.20923	914.8575
4710	78.5	0.20923	917.9959
4725	78.75	0.20923	921.1344
4740	79	0.20923	924.2728
4755	79.25	0.20923	927.4113
4770	79.5	0.20923	930.5497
4785			933.6881
4785	79.75 80	0.20923	935.6881
4815	80.25	0.20923	939.965
4830	80.5	0.20923	943.1035
4845	80.75	0.20923	946.2419
4860	81	0.20923	949.3804
4875	81.25	0.20923	952.5188
4890	81.5	0.20923	955.6573
4905	81.75	0.20923	958.7957
4920	82	0.20923	961.9342
4935	82.25	0.20923	965.0726
4950	82.5	0.20923	968.2111
4965	82.75	0.20606	971.302
4980	83	0.20289	974.3453
4995	83.25	0.199719	977.3411
5010	83.5	0.196549	980.2893
5025	83.75	0.193379	983.19
5040	84	0.190209	986.0432
5055	84.25	0.187039	988.8487
5070	84.5	0.183869	991.6068
5085	84.75	0.180698	994.3173
5100	85	0.177528	996.9802
5115	85.25	0.174358	999.5955
5130			
	85.5	0.171188	1002.163
5145	85.75	0.168018	1004.684
5160	86	0.164848	1007.156
5175	86.25	0.161678	1009.582
5190	86.5	0.158507	1011.959
5205	86.75	0.155337	1014.289
5220	87	0.152167	1016.572
5235	87.25		1018.807
		0.148997	
5250	87.5	0.145827	1020.994
5265	87.75	0.142657	1023.134
5280	88	0.139487	1025.226
5295	88.25	0.136316	1027.271
5310	88.5	0.133146	1029.268
5325	88.75	0.129976	1031.218
5340	89	0.126806	1033.12
5355	89.25	0.123636	1034.974
5370	89.5	0.120466	1036.781
5385	89.75	0.117296	1038.541
5400	90	0.114125	1040.253
5415	90.25	0.110955	1041.917
5430	90.5	0.107785	1043.534
5445	90.75	0.104615	1045.103
5460	91	0.104015	1046.625
5475	91.25	0.101443	1048.099
5490	91.5	0.095104	1049.525
5505	91.75	0.091934	1050.904
5520	92	0.088764	1052.236
5535	92.25	0.085594	1053.52
5550	92.5	0.082424	1054.756
5565			
	92.75	0.079254	1055.945
	92.75 93	0.079254	1055.945
5580 5595	92.75 93 93.25	0.079254 0.076084 0.072913	1055.945 1057.086 1058.18

5610	93.5	0.069743	1059.226
5625	93.75	0.066573	1060.225
5640	94	0.063403	1061.176
5655	94.25	0.060233	1062.079
5670	94.5	0.057063	1062.935
5685	94.75	0.053893	1063.744
5700	95	0.050722	1064.504
5715	95.25	0.047552	1065.218
5730	95.5	0.044382	1065.883
5745	95.75	0.041212	1066.502
5760	96	0.038042	1067.072
5775	96.25	0.034872	1067.595
5790	96.5	0.031701	1068.071
5805	96.75	0.028531	1068.499
5820	97	0.025361	1068.879
5835	97.25	0.022191	1069.212
5850	97.5	0.019021	1069.497
5865	97.75	0.015851	1069.735
5880	98	0.012681	1069.925
5895	98.25	0.00951	1070.068
5910	98.5	0.00634	1070.163
5925	98.75	0.00317	1070.211
5940	99	0	1070.211
5955	99.25	0	1070.211
5970	99.5	0	1070.211
5985	99.75	0	1070.211
6000	100	0	1070.211
6015	100.25	0	1070.211
6030	100.5	0	1070.211
6045	100.75	0	1070.211
6060	101	0	1070.211
6075	101.25	0	1070.211
6090	101.5	0	1070.211
6105	101.75	0	1070.211
6120	102	0	1070.211
6135	102.25	0	1070.211
6150	102.5	0	1070.211
6165	102.75	0	1070.211
6180	103	0	1070.211
6195	103.25	0	1070.211
6210	103.5	0	1070.211
6225	103.75	0	1070.211
6240	104	0	1070.211
6255	104.25	0	1070.211
6270	104.5	0	1070.211
6285	104.75	0	1070.211
6300	105	0	1070.211
6315	105.25	0	1070.211
6330	105.5	0	1070.211
6345	105.75	0	1070.211
6360	106	0	1070.211
6375	106.25	0	1070.211
6390	106.5	0	1070.211
6405	106.75	0	1070.211
6420	107	0	1070.211
6435	107.25	0	1070.211
6450	107.5	0	1070.211
6465	107.75	0	1070.211
6480	108	0	1070.211
6495	108.25	0	1070.211
6510	108.5	0	1070.211
6525	108.75	0	1070.211
6540	109	0	1070.211
6555	109.25	0	1070.211
6570	109.5	0	1070.211
6585	109.75	0	1070.211
6600	110	0	1070.211
6615	110.25	0	1070.211
6630	110.5	0	1070.211
6645	110.75	0	1070.211
6660	111	0	1070.211
6675	111.25	0	1070.211
6690	111.5	0	1070.211
6705	111.75	0	1070.211
6720	112	0	1070.211
6735	112.25	0	1070.211


6750	112.5	0	1070.211
6765	112.75	0	1070.211
6780	113	0	1070.211
6795	113.25	0	1070.211
6810	113.5	0	1070.211
6825	113.75	0	1070.211
6840	114	0	1070.211
6855	114.25	0	
			1070.211
6870	114.5	0	1070.211
6885	114.75	0	1070.211
6900	115	0	1070.211
6915	115.25	0	1070.211
6930	115.5	0	1070.211
6945	115.75	0	1070.211
6960	116	0	1070.211
6975	116.25	0	1070.211
6990	116.5	0	1070.211
7005		0	1070.211
	116.75	0	
7020	117	-	1070.211
7035	117.25	0	1070.211
7050	117.5	0	1070.211
7065	117.75	0	1070.211
7080	118	0	1070.211
7095	118.25	0	1070.211
7110	118.5	0	1070.211
7125	118.75	0	1070.211
7140	119	0	1070.211
7155	119.25	0	1070.211
7170	119.5	0	1070.211
7185	119.75	0	1070.211
7200	120	0	1070.211
7215	120.25	0	1070.211
7230	120.5	0	1070.211
7245	120.75	0	1070.211
7260	121	0	1070.211
7275	121.25	0	1070.211
7290	121.5	0	1070.211
7305	121.75	0	1070.211
		-	
7320	122	0	1070.211
7335	122.25	0	1070.211
7350	122.5	0	1070.211
7365	122.75	0	1070.211
7380	123	0	1070.211
7395	123.25	0	1070.211
7410	123.5	0	1070.211
7425	123.75	0	1070.211
7440	124	0	1070.211
7455		0	1070.211
	124.25		
7470	124.5	0	1070.211
7485	124.75	0	1070.211
7500	125	0	1070.211
7515	125.25	0	1070.211
7530	125.5	0	1070.211
7545	125.75	0	1070.211
7560	126	0	1070.211
7575	126.25	0	1070.211
7590	126.5	0	1070.211
7605	126.75	0	1070.211
7620		0	
, 020	127		1070.211
7635	127.25	0	1070.211
7650	127.5	0	1070.211
7665	127.75	0	1070.211
7680	128	0	1070.211
7695	128.25	0	1070.211
7710	128.5	0	1070.211
7725	128.75	0	1070.211
7740	129	0	1070.211
7755	129.25	0	1070.211
7770	129.25	0	1070.211
		-	
7785	129.75	0	1070.211
7800	130	0	1070.211
7815	130.25	0	1070.211
7830	130.5	0	1070.211
7845	130.75	0	1070.211
7860	131	0	1070.211
7875	131.25	0	1070.211
		-	

7890	131.5	0	1070.211
7905	131.75	0	1070.211
7920	132	0	1070.211
7935	132.25	0	1070.211
7950	132.5	0	1070.211
7965	132.75	0	1070.211
7980	133	0	1070.211
7995	133.25	0	1070.211
8010	133.5	0	1070.211
8025	133.75	0	1070.211
8040	134	0	1070.211
8055	134.25	0	1070.211
8070	134.5	0	1070.211
8085	134.75	0	1070.211
8100	135	0	1070.211
8115	135.25	0	1070.211
8130	135.5	0	1070.211
8145	135.75	0	1070.211
8160	136	0	1070.211
8175	136.25	0	1070.211
8190	136.5	0	1070.211
8205	136.75	0	1070.211
8220	137	0	1070.211
8235	137.25	0	1070.211
8250	137.5	0	1070.211
8265	137.75	0	1070.211
8280	138	0	1070.211
8295	138.25	0	1070.211
8310	138.5	0	1070.211
8325	138.75	0	1070.211
8340	139	0	1070.211
8355	139.25	0	1070.211
8370	139.5	0	1070.211
8385	139.75	0	1070.211
8400	140	0	1070.211
8415	140.25	0	1070.211
8430	140.5	0	1070.211
8445	140.75	0	1070.211
8460	141	0	1070.211
8475	141.25	0	1070.211
8490	141.5	0	1070.211
8505	141.75	0	1070.211
8520	142	0	1070.211
8535	142.25	0	1070.211
8550	142.5	0	1070.211
8565	142.75	0	1070.211
8580	143	0	1070.211
8595	143.25	0	1070.211
8610	143.5	0	1070.211
8625	143.75	0	1070.211
8640	144	0	1070.211
8655	144.25	0	1070.211
8670	144.5	0	1070.211
8685	144.75	0	1070.211
8700	145	0	1070.211
8715	145.25	0	1070.211
8730	145.5	0	1070.211
8745	145.75	0	1070.211
8760	146	0	1070.211
8775	146.25	0	1070.211
8790	146.5	0	1070.211
8805	146.75	0	1070.211
8820	147	0	1070.211
8835	147.25	0	1070.211
8850	147.5	0	1070.211
8865	147.75	0	1070.211
8880	148	0	1070.211
8895	148.25	0	1070.211
8910	148.5	0	1070.211
8925	148.75	0	1070.211
8940	149	0	1070.211
8955	149.25	0	1070.211
8970	149.5	0	1070.211
8985	149.75	0	1070.211
9000	150	0	1070.211
9015	150.25	0	1070.211
3013	155.25	U	10.0.211


9030	150.5	0	1070.211
9045	150.75	0	1070.211
9060	151	0	1070.211
9075	151.25	0	1070.211
9090	151.5	0	1070.211
9105	151.75	0	1070.211
9120	152	0	1070.211
9135	152.25	0	1070.211
9150 9165	152.5	0	1070.211
	152.75	-	1070.211
9180	153	0	1070.211
9195	153.25	0	1070.211
9210 9225	153.5 153.75	0	1070.211 1070.211
9225	153.75	0	1070.211
9240	154.25	0	1070.211
9255	154.25	0	1070.211
9270	154.75	0	1070.211
9300	154.75	0	1070.211
9315	155.25	0	1070.211
9330	155.5	0	1070.211
9345	155.75	0	1070.211
9360	156	0	1070.211
9375	156.25	0	1070.211
9390	156.5	0	1070.211
9405	156.75	0	1070.211
9420	157	0	1070.211
9435	157.25	0	1070.211
9450	157.5	0	1070.211
9465	157.75	0	1070.211
9480	158	0	1070.211
9495	158.25	0	1070.211
9510	158.5	0	1070.211
9525	158.75	0	1070.211
9540	159	0	1070.211
9555	159.25	0	1070.211
9570	159.5	0	1070.211
9585	159.75	0	1070.211
9600	160	0	1070.211
9615	160.25	0	1070.211
9630	160.5	0	1070.211
9645	160.75	0	1070.211
9660	161	0	1070.211
9675	161.25	0	1070.211
9690	161.5	0	1070.211
9705	161.75	0	1070.211
9720	162	0	1070.211
9735	162.25	0	1070.211
9750	162.5	0	1070.211
9765	162.75	0	1070.211
9780	163	0	1070.211
9795	163.25	0	1070.211
9810	163.5	0	1070.211
9825	163.75	0	1070.211
9840	164	0	1070.211
9855	164.25	0	1070.211
9870	164.5	0	1070.211
9885	164.75	0	1070.211
9900	165	0	1070.211
9915	165.25	0	1070.211
9930	165.5	0	1070.211
9945	165.75	0	1070.211
9960	166	0	1070.211
9975	166.25	0	1070.211
9990	166.5	0	1070.211
10005	166.75	0	1070.211
10020	167	0	1070.211
10035	167.25	0	1070.211
10050	167.5	0	1070.211
10065	167.75	0	1070.211
10080	168	0	1070.211
10095	168.25	0	1070.211
10110	168.5	0	1070.211
10125	168.75	0	1070.211
10140	169	0	1070.211
10155	169.25	0	1070.211

10170	169.5	0	1070.211
10185	169.75	0	1070.211
10200	170	0	1070.211
10215	170.25	0	1070.211
10230	170.5	0	1070.211
10245	170.75	0	1070.211
10260	171	0	1070.211
10275	171.25	0	1070.211
10290	171.5	0	1070.211
		-	
10305	171.75	0	1070.211
10320	172	0	1070.211
10335	172.25	0	1070.211
10350	172.5	0	1070.211
10365	172.75	0	1070.211
10380	173	0	1070.211
10395	173.25	0	1070.211
10410	173.5	0	1070.211
10425	173.75	0	1070.211
10440	174	0	1070.211
10455	174.25	0	1070.211
		-	
10470	174.5	0	1070.211
10485	174.75	0	1070.211
10500	175	0	1070.211
10515	175.25	0	1070.211
		-	
10530	175.5	0	1070.211
10545	175.75	0	1070.211
10560	176	0	1070.211
10575	176.25	0	1070.211
10590	176.5	0	1070.211
10605	176.75	0	1070.211
10620	177	0	1070.211
10635	177.25	0	1070.211
10650	177.5	0	1070.211
10665	177.75	0	1070.211
10680	178	0	1070.211
10695	178.25	0	1070.211
10710	178.5	0	1070.211
10725	178.75	0	1070.211
		-	
10740	179	0	1070.211
10755	179.25	0	1070.211
10770	179.5	0	1070.211
10785	179.75	0	1070.211
		-	
10800	180	0	1070.211
10815	180.25	0	1070.211
10830	180.5	0	1070.211
10845	180.75	0	1070.211
10860	181	0	1070.211
10875	181.25	0	1070.211
10890	181.5	0	1070.211
		0	
10905	181.75		1070.211
10920	182	0	1070.211
10935	182.25	0	1070.211
10950	182.5	0	1070.211
10965	182.75	0	1070.211
		-	
10980	183	0	1070.211
10995	183.25	0	1070.211
11010	183.5	0	1070.211
11025	183.75	0	1070.211
		-	
11040	184	0	1070.211
11055	184.25	0	1070.211
11070	184.5	0	1070.211
11085	184.75	0	1070.211
11100	185	0	1070.211
11115	185.25	0	1070.211
11130	185.5	0	1070.211
		0	
11145	185.75		1070.211
11160	186	0	1070.211
11175	186.25	0	1070.211
11190		0	1070.211
	186.5		20,0.211
11205	186.5	-	1070 211
11205	186.75	0	1070.211
11205 11220		-	1070.211 1070.211
	186.75 187	0	1070.211
11220 11235	186.75 187 187.25	0 0	1070.211 1070.211
11220 11235 11250	186.75 187 187.25 187.5	0 0 0	1070.211 1070.211 1070.211
11220 11235 11250 11265	186.75 187 187.25 187.5 187.75	0 0 0 0	1070.211 1070.211 1070.211 1070.211
11220 11235 11250 11265 11280	186.75 187 187.25 187.5 187.75 188	0 0 0	1070.211 1070.211 1070.211 1070.211 1070.211
11220 11235 11250 11265	186.75 187 187.25 187.5 187.75	0 0 0 0	1070.211 1070.211 1070.211 1070.211

11310	188.5	0	1070.211
11325	188.75	0	1070.211
11340	189	0	1070.211
11355	189.25	0	1070.211
11370	189.5	0	1070.211
11385	189.75	0	1070.211
11400	190	0	1070.211
11415	190.25	0	1070.211
11430	190.5	0	1070.211
11445	190.75	0	1070.211
11460	191	0	1070.211
11475	191.25	0	1070.211
11490	191.5	0	1070.211
11505	191.75	0	1070.211
11520	192	0	1070.211
11535	192.25	0	1070.211
11550	192.5	0	1070.211
11565	192.75	0	1070.211
11580	193	0	1070.211
11595	193.25	0	1070.211
11610	193.5	0	1070.211
11625	193.75	0	1070.211
11640	194	0	1070.211
11655	194.25	0	1070.211
11670	194.5	0	1070.211
11685	194.75	0	1070.211
11700	195	0	1070.211
11715	195.25	0	1070.211
11730	195.5	0	1070.211
11745	195.75	0	1070.211
11760	196	0	1070.211
11775	196.25	0	1070.211
11790	196.5	0	1070.211
11805	196.75	0	1070.211
11820	197	0	1070.211
11835	197.25	0	1070.211
11850	197.5	0	1070.211
11865	197.75	0	1070.211
11880	198	0	1070.211
11895	198.25	0	1070.211
11910	198.5	0	1070.211
11925	198.75	0	1070.211

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any execution and the purpose specified above and that any execution is small to the purpose specified above.

OVERLAND CAPACITY

0.744 m³/s

0.386 m3/s

0.0040 m/m

0.020

0.547

Q₁₀₀ =

Q_{es} =

n=

So=

@ Chainage: TBA

0.358 m³/s

= 97.883

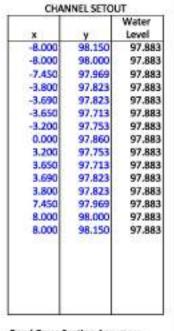
0.736

Date: 14.03.2023

AHD

m²

m


y(min)	E	yc	у	A	P	F	R ^{2/3}	V	aV2/2g
97.71	0.177	0.170	0.170	0.74	10.75	-0.001	0.17	0.525	0.008

Opipe -

Wetted Perimeter = 10.751

Water Level

Water Area

98.250 99.100 97.800 97.650 97.650 97.650 97.800 CHANAGE (m)

Actual Flow

Road Cross Section Assumes:-1 in 50 cross fall for footpaths 1 in 25 cross fall for nature strips 1 in 30 cross fall for carriageway

dw	=	0.068	m	<	0.300	m	OK	As per Guidelines for Development in Flood Affected Areas (DELWP, February 2019)
Vw	-	0.525	m/s					
V.d _w	=	0.036	m ⁴ /s	<	0.300	m²/s	OK	As per Guidelines for Development in Flood Affected Areas (DELWP, February 2019)
dmax		0.170	m	<	0.300	m	OK	As per Guidelines for Development in Flood Affected Areas (DELWP, February 2018)

Appendix G – MW Correspondences

WE VALUE:

PEOPLE
RELIABILITY / CONSISTENCY
TEAMWORK / COMRADERY
CONTINUAL IMPROVEMENT

SUBDIVISIONS | SURVEYS
TOWN PLANNING | BUSHFIRE PLANNING

Please note I discussed the below matter with our respective engineers.

The upshot was that MW's preference is that the pipeline section referred to (i.e. D1 to D2) is relocated south to within the gravel section of Petty Road, to avoid the stated tree impacts. This would also generally align with the DSS.

Kind regards,

We acknowledge the Victorian Traditional Owners and their Elders past and present as the original custodians of Victoria's land and waters and I pay my respects to their Elders past and present and to the ongoing living culture of Aboriginal and Torres Strait I hope this finds you well.

Can we get an urgent ETA on the result of your discussions regarding the result of your discussions regarding my email below dated 11th March 2025.

Thank you in advance.

WE VALUE: PEOPLE RELIABILITY / CONSISTENCY

TEAMWORK / COMRADERY CONTINUAL IMPROVEMENT

SUBDIVISIONS | SURVEYS
TOWN PLANNING | BUSHFIRE PLANNING

PAKENHAM | WARRAGUL | RYE | GEELONG | SURSHINE COAST

Thank you for your time on the phone earlier today.

You have provided the Planning Permit conditions for the above-mentioned application and associated reference. We would like to bring to your attention a request from Cardinia Shire Council that has regard to the removal of the pipes in the Bunyip West DSS identified as D1 and D2 on the basis that the construction of this section of the Bunyip West DSS will have <u>avoidable</u> biodiversity consequences and impacts for vegetation within the proposed bushland reserve and the Petty Road reserve.

We propose that the D1 and D2 pipes are removed and their drainage capacity (for Number 4 Wattletree Road) be replaced via a northward extension of N1 (Highlighted as the blue line below). The topography lends itself to this configuration and the vegetation in this section of McNamara looks to be less dense.

can the merits of this proposal please be raised with your peers. We are happy to discuss this in a meeting with all relevant parties in attendance.

We will revise our SWMS for this proposal in accordance with the agreed position of the Responsible Authorities.

We look forward to talking with you further, at your earliest convenince.

If you have received this email in error, please notify the sender by return email, delete it from your system and destroy any copies.

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge Arboricultural Report v8.

8 WATTLETREE RD, BUNYIP 3815

Contents										
1.0 2.0	Introduction	2 2								
	Map 1 Aerial image Map1a) Close up aerial image Map 2 Contour map Map 3 Location map Map 4 Site map- existing inc. tree locations, remove & retain. Map 5 Site map- proposed, Numbered trees, SRZ's, TPZ's & management									
3.0	Vegetation AssessmentPictorial Assessment	7								
4.0	Recommendations & Conclusions	86								
5.0	References	91								
6.0	Appendices – NVR	92								

This arboricultural report has been prepared by Healesville Plants under instructions by Nobelius Surveyors on behalf of the owners of 8 Wattletree Rd, Bunyip, located in the Cardinia Shire Council, where an on-site assessment of the trees is required to ascertain the impact of a proposed new subdivision.

There were 95 trees to be addressed, 54 on the property, 2 on the neighbouring property to the west and 35 on the nature strip to the south, all are numbered on the Site Plan. The size, health and any particular issues for the trees assessed were noted. The general health of the trees assessed varied with some deadwood, and minor signs of stress, i.e. insect damage and epicormic growth. Of the trees addressed 55 are indigenous to the area, 1 is a planted native species, 35 are exotic species and 4 are dead – assessed due to them being greater than 40cm DBH. 40 trees require a permit to remove.

Site description

Introduction

2.0

Healesville Plants undertook this tree assessment in March & April 2023, and June 2025. Inspection was made at ground level and observations, recommendations and conclusions reached in light of our experience.

Council Property Number: 5000016494 SPI (Standard Parcel Identifier): 2\PS708283 Lot and Plan Number: Lot 2 PS708283 Directory Reference: Vicroads 718 E9

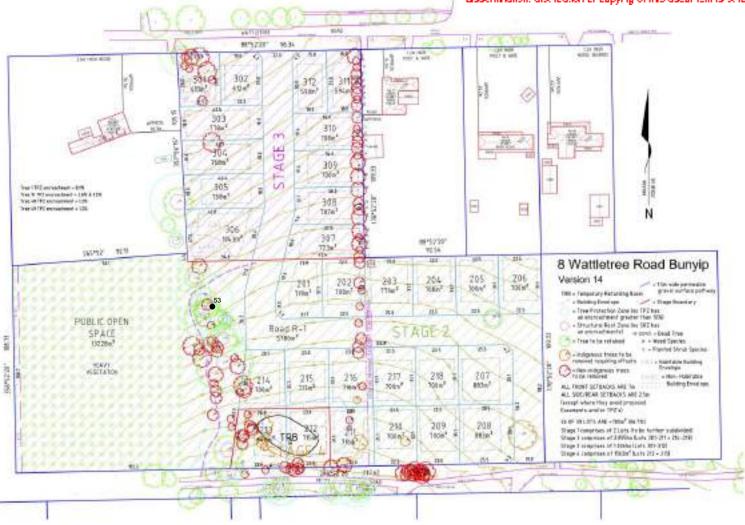
The \sim 10-acre property is located on Wattletree Road, Bunyip, backing onto Petty Road, it is \sim 65m ASL with a southerly aspect and currently consists of paddock areas with windbreak treed section, a shed and large dam and a bushland area. This property is in a well \sim established area, with residential and rural residential properties in Bunyip. There is a mix of smaller and larger properties in the immediate surrounds, with fragmented treed areas.

Map 1. Aerial image (Source Vicplan 2018)

Map 1a). Close up aerial image of property (Source Vicplan 2018)

The site is zoned General Residential Zone – Schedule 1 (GRZ1) with no planning overlays; it is in a Designated Bushfire Prone Area.

The original indigenous vegetation expected is Highlands Southern Fall EVC 16 – Lowland Forest with the predominant tree species being *Eucalyptus obliqua*, *E. radiata*, *E. sieberi* & *E. dives*. The Cardinia vegetation zoning is Zone 4, Heathy Woodland Complex where *Allocasuarina littoralis*, *Eucalyptus baxteri*, *E. cephalocarpa*, *E. cypellocarpa*, *E. dives*, *E. fulgens*, *E. goniocalyx*, *E. obliqua*, *E. ovata*, *E. radiata* and *E. viminalis* ssp. *viminalis* are expected. *Eucalyptus globoidea*, White Stringybark is also present on the site some as Large and Very Large Old Trees. There is some remnant indigenous canopy and lower storey species present in the proposed bushland reserve zone, and the cleared area of the property has long been managed as grazing for sheep and horses.


Map 2. Contours (Source Vicplan 2023)

Map 3. Location (Source Vicplan 2023)

Map 4. Site map including tree locations and existing conditions

Map 5. Site map including development proposal and tree management – retain/remove & TPZ/SRZ plus incursion from proposed development.

Vegetation Assessment

3.0

Table 1. Tree List at 8 Wattletree Rd, Bunyip

Table No.	1. Tree List at 8 V Species	DBH	TPZ	SRZ	Hgt~	Wth-	L.S.	Sig.	ULE	Struct	Roots	Сру	Ret	R/	Notes
- 101	op color	cm	m	m	m	m		0-0.	yrs				Value	Ret	
1	Eucalyptus globoidea (White Stringybark)	91 L.O.T	10.9	3.4	22	N-S 8 E-W 18	Mat	High	10+	2	2	4	High	Ret	Was bifurcated at base – N co-dependant broken off – large cavity scar – also scar E side - medium response growth, large & fine deadwood, asymmetrical bifurcation with included bark – up high - repeated, termites, exposed & damaged SR, NDW driveway, road, drain and fences within TPZ, pruned from powerlines, crossing limbs, scar high in canopy on main trunk. Offset as consequential loss.
2	Cupressus x leylandii (Leyland's Cypress)	21	2.5	1.9	9	N~S 6 E~W 5	Mat	Mod	15+	3	3	3	Low	R	1-sided N&W, fine & large deadwood, pruned from powerlines, fence within TPZ, phototropic response from #3.
3	Cupressus x leylandii	40+ 28+ 27= 56	6.7	3.0	16	N~S 9 E~W 7	Mat	Mod	15+	4	3	4	Mod	R	Repeated bifurcation, had pruning from powerlines, large & fine deadwood, fence within TPZ.
4	Cupressus x leylandii	32+ 32+ 32+ 23= 60	7.2	3.0	16	N~S 12 E~W 9	Mat	Mod	15+	4	3	4	Mod	R	Repeated bifurcation, had pruning from powerlines, large & fine deadwood, fence within SRZ.
5	Betula alba (Silver Birch)	6+ 21=	2.6	2.0	12	N~S 6	Mat	Mod	7+	3	3	2	Low	R	Lots of large & fine deadwood, faunal browsing, apical dieback, broken

- T	10.	DET	rrir	OP.7	TT -	337/1	T 0	o.	T 77 T						acument is strictly promared
No.	Species	DBH	TPZ	SRZ	Hgt~	Wth~	L.S.	Sig.	ULE	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
		cm	m	m	m	m			yrs				1 02000		
		22				E~W 5									limbs, suckering from base, bends in trunk.
6	Betula alba	19+ 10+ 10+ 10= 26	3.1	2.4	12	N~S 5 E~W 7	Mat	Mod	5+	2	3	2	Low	R	Apical dieback, lots of large & fine deadwood, suckering E&W sides, low LCR, girdles & damaged SR, broken limbs, flat asymmetrical bifurcation – repeated.
7	Quercus robur (English Oak)	51	6.1	2.6	14	N-S 13 E-W 13	Mat	Mod	15+	4	3	3	Mod	R	Has had some pruning, lots of epicormics, large & fine deadwood, well balanced, faunal browsing, powdery mildew on foliage, repeated bifurcation up high, insect damage.
8	Betula alba	22	2.6	2.0	15	N~S 5 E~W 7	Mat	Mod	7+	3	2	3	Low	R	Faunal browsing, asymmetrical bifurcation – repeated, large & fine deadwood, broken limbs, lost limbs – good response growth, rabbit warren & scratching in RZ, exposed SR, extreme root flare on S side, leaning ~70°.
9	Quercus robur	43	5.2	2.5	14	N-S 16 E-W 16	Mat	Mod	15+	4	3	4	Mod	R	Growing in fenced area in paddock, large & fine deadwood, rabbit scratching in RZ, exposed & damaged SR, epicormics, Ivy up trunk, faunal browsing, repeated asymmetrical bifurcation, natural grafting of limbs.
10	Eucalyptus globoidea	140 Estimated L.O.T	15.0	4.1 Est.	26	N-S 22 E-W 18	Mat	Mod	15+	4	3	4	High	Ret	NDW. Large & fine deadwood, has had some pruning – including large limbs, mature & young epicormics, exposed SR, repeated asymmetrical bifurcation, fence within SRZ, wood stored at base.

				•											acument is strictly promoted
No.	Species	DBH cm	TPZ m	SRZ m	Hgt~ m	Wth- m	L.S.	Sig.	ULE yrs	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
11	Robinia pseudoacacia (Black Locust)	24+ 24= 34 Est.	4.1	2.2 Est.	17	N-S 9 E-W 10	Mat	Mod	15+	3	4	3	Low	Ret	bifurcation – lots of included bark, overextended limbs E, 1-sided N, lots of seedlings in yard (& bush reserve area).
12	Cupressus x leylandii	38+ 110 = 116 Est.	13.9	3.6 Est.	16	N~S 8 E-W 10	Mat	Mod	15+	3	3	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, repeated asymmetrical bifurcation – 3 co-dependants fused at 1.3m, has had pruning from powerlines, 1-sided W.
13	Photinia robusta (Redaleaf Photinia)	12+ 12+ 12+ 10+ 8= 24 Est.	2.9	1.7 Est.	6	N~S 4 E~W 5	Mat	Mod	15+	3	3	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, repeated bifurcation, fine deadwood, allelopathic effect from #12. Retain for screening
14	Alnus glutinosa (Common Alder)	18+ 8+ 10+ 10= 24 Est.	2.9	1.8 Est.	6	N~S 3 E~W 5	Sen	Mod	5+	1	3	2	Low	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, main trunk & branching damaged - dying back – rot, poor response growth, suckering from base, large & fine deadwood.
15	Photinia robusta	12+ 12+ 16+ 14+ 12= 30	3.6	1.9 Est.	7	N-S 6 E-W 6	Mat	Mod	15+	3	3	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, 1-sided & overextended limbs W, lower limbs pruned W side,

Mc	Creacias	DDII	לילודו	CDIZ	TTct	11741-	TC	Cic	TTT	Struct	Roots	Сру	Ret	R/	Notes
No.	Species	DBH	TPZ	SRZ	Hgt~	Wth~	L.S.	Sig.	ULE	Struct	ROOIS	Сру	Value	Ret	Notes
		Est.	m	m	m	m			yrs						large & fine deadwood, repeated bifurcation. Retain for screening
16	Cupressus x leylandii	100 Est.	12.0	3.4 Est.	8	N~S 8 E~W 10	Mat	Mod	7+	2	3	3	Low	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, fine & large deadwood, has had main leaders lopped off epicormics & suckering lower down not from cuts, dying back from top, repeated bifurcation – 3 codependants fused at 1.3m.
17	Photinia robusta	8+8 +8+ 8+8 =18 Est.	2.2	1.8 Est.	7	N-S 6 E-W 6	Mat	Mod	12+	3	3	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, repeated bifurcation, large & fine deadwood, excluded from light by #16&18. Retain for screening.
18	Cupressus x leylandii	42 Est.	5.0	2.3 Est.	8	N-S 7 E-W 8	Mat	Mod	12+	3	4	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, top lopped off, epicormics coming from cuts, repeated bifurcation within included bark – fused co-dependants. Retain for screening
19	Photinia robusta	6+6 +8+ 8+ 10= 17 Est.	2.0	1.6 Est.	8	N~S 5 E~W 7	Mat	Mod	15+	3	3	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, repeated bifurcation,

N.T.	0	DDII	mprz	OPZ	TT /	337/1	ΤΛ	Q:.	T 77 T7	Struct	Roots		Ret	R/	acument is strictly promoned
No.	Species	DBH cm	TPZ m	SRZ m	Hgt~ m	Wth- m	L.S.	Sig.	ULE yrs	Struct	KOOIS	Сру	Value	Ret	Notes
															light excluded from #18&20, fine deadwood. Retain for screening
20	Cupressus x leylandii	62 Est.	7.4	2.7 Est.	8	N~S 9 E~W 10	Mat	Mod	12+	3	3	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, bifurcated with included bark, main co-dependants fused at 1.3m, large & fine deadwood, top lopped off, epicormics. Retain for screening
21	Alnus glutinosa	28 Est.	3.4	2.0 Est.	11	N-S 7 E-W 10	Mat	Mod	7+	3	3	4	Low	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, asymmetrical bifurcation, large & fine deadwood, scarring / guttering on top of lower limbs, epicormics, suckering.
22	Photinia robusta	6+6 +8+ 8+ 10= 17 Est.	2.0	1.8 Est.	6	N~S 5 E~W 5	Mat	Mod	12+	4	3	3	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE driveway & fences within SRZ, repeated bifurcation, fine deadwood, allelopathic effect from #21&23.
23	Alnus glutinosa	22+ 24+ 3+4 =33 Est.	4.0	2.0 Est.	14	N~S 8 E~W 9	Mat	Mod	10+	4	2	4	Low	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE shed & concrete apron & fences within SRZ, exposed SR, NDE driveway within TPZ, repeated asymmetrical bifurcation, fine & large deadwood, has had some

No	Creacias	DDII	ידים די	CD7	TTat	11741 ₀	T C	Cia	ULE	Struct	Roots	Сру	Ret	R/	Notes
No.	Species	DBH	TPZ	SRZ	Hgt~	Wth-	L.S.	Sig.		biraci	ROOLS	Сру	Value	Ret	Notes
		cm	m	m	m	m			yrs						pruning, epicormics, guttering on top of lower limbs.
24	Photinia robusta	4+4 +9+ 12= 16 Est.	2.0	1.6 Est.	6	N-S 5 E-W 5	Mat	Mod	12+	3	3	3	Low	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE shed & fences within SRZ, repeated bifurcation, fine & large deadwood, allelopathic effect from #23&25, epicormics.
25	Alnus glutinosa	21+ 21+ 38= 48 Est.	5.8	2.2 Est.	10	N~S 7 E~W 9	Mat +	Mod	5+	2	2	2	Low	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE shed & fences within SRZ, exposed SR, repeated asymmetrical bifurcation, fine & large deadwood, large scarring/guttering on all main leaders – rot in wounds, mature & young epicormics, suckering from base, poor taper, low LCR.
26	Photinia robusta	9+6 +4+ 4+4 =13 Est.	2.0	1.8 Est.	7	N-S 4 E-W 5	Mat	Mod	12+	3	3	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE shed & fences within SRZ, repeated bifurcation, fine deadwood, epicormics, 1-sided N&E - allelopathic effect from #25&27.
27	Cupressus x leylandii	50+ 18+ 24= 58 Est.	7.0	2.8 Est.	14	N-S 10 E-W 10	Mat	Mod	15+	4	3	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, NDE shed & fences within SRZ, wood box & building materials within TPZ, repeated bifurcation, fine & large deadwood, epicormics, altered NGL.

	1	T			T	T	T = =	I	·						acument is strally promaned
No.	Species	DBH cm	TPZ m	SRZ m	Hgt~ m	Wth- m	L.S.	Sig.	ULE yrs	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
28	Cupressus x leylandii	54+ 22= 58 Est.	7.0	2.9 Est.	14	N~S 8 E~W 9	Mat	Mod	15+	4	4	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, fences within SRZ, wood box & building materials within TPZ, repeated bifurcation, large & fine deadwood, lower limbs pruned, epicormics.
29	Cupressus x leylandii	55+ 20+ 20= 62 Est.	7.4	2.8 Est.	14	N~S 10 E~W 11	Mat	Mod	15+	4	4	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, fences within SRZ, wood box & building materials within TPZ, repeated bifurcation, large & fine deadwood, epicormics.
30	Alnus glutinosa	32 Est.	3.8	2.1 Est.	14	N~S 6 E~W 9	Mat	Mod	7+	3	3	2	Low	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, fences & wood box within SRZ, low LCR, large & fine deadwood, scarring main trunk & tops of limbs, lost limbs, epicormics.
31	Photinia robusta	8+6 +10 +12 =19 Est.	2.3	1.6 Est.	7	N~S 4 E~W 6	Mat	Mod	12+	3	4	3	Low	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, fences within SRZ, repeated bifurcation, large & fine deadwood, allelopathic effect from #30.
32	Cupressus x leylandii	54 Est.	6.5	2.8 Est.	15	N~S 9 E~W 10	Mat	Mod	15+	4	4	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, fences within SRZ, large & fine deadwood.
33	Cupressus x leylandii	46 Est.	5.5	2.4 Est.	13	N~S 7	Mat	Mod	12+	3	4	4	Low	R	Growing as part of a fenced off windbreak planting on E boundary

	· ·	T			T										acument is strictly promared
No.	Species	DBH cm	TPZ m	SRZ m	Hgt~ m	Wth- m	L.S.	Sig.	ULE yrs	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
						E-W 8									fenceline, fences within SRZ, large & fine deadwood, dry rot in main trunk – in scar W side, repeated asymmetrical bifurcation – fused codependants, epicormics.
34	Photinia robusta	9+9 +8+ 12= 19 Est.	2.3	1.5 Est.	7	N~S 6 E~W 6	Mat	Mod	12+	3	4	4	Low	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, fences within SRZ, repeated bifurcation, fine deadwood, allopathic effect from #33&35
35	Cupressus x leylandii	46+ 18= 49 Est.	5.9	2.5 Est.	15	N~S 9 E~W 10	Mat	Mod	15+	4	4	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, fences within SRZ, large & fine deadwood, asymmetrical bifurcation, epicormics.
36	Photinia robusta	4+6 +4+ 4+4 =10 Est.	2.0	1.5 Est.	6	N~S 5 E~W 6	Mat	Mod	15+	3	4	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, fences within SRZ, repeated bifurcation, fine deadwood, epicormics, allelopathic effect from #35.
37	Callistemon salignus (Willow Bottlebrush)	20+ 10+ 10+ 19= 31est.	3.7	2.5 Est.	9	N~S 6 E~W 7	Mat	Mod	12+	3	4	4	Mod	R	Growing as part of a fenced off windbreak planting on E boundary fenceline, fences within SRZ, repeated bifurcation from base, lots of large & fine deadwood.
38	Betula alba	18	2.2	1.8	8	N~S 6 E~W 6	Mat	Mod	10+	3	3	3	Low	R	Fine deadwood, internal fence within SRZ, drain within TPZ, bends in trunk 70° N then E.

						•		•							lacument is strictly promoted
No.	Species	DBH cm	TPZ m	SRZ m	Hgt~ m	Wth- m	L.S.	Sig.	ULE yrs	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
39	Eucalyptus viminalis ssp. pryoriana (Gippsland Manna Gum)	36+ 36+ 60= 79	9.5	3.9 Est.	20	N-S 14 E-W 16	Mat	High	15+	3	3	4	High	R	Growing at toe of dam embankment, repeated asymmetrical bifurcation, epicormics, 1-sided N&E, insect damage, lost main leaders, galls up high – in union, internal fence within SRZ, Sweet Pittosporum at base. Offset as will be lost with dam works.
40	Eucalyptus obliqua (Messmate)	54	6.5	2.7	18	N-S 14 E-W 16	Mat	High	15+	4	3	4	High	R	Growing at toe of dam embankment, boundary fence within SRZ, high symmetrical bifurcation, large & fine deadwood, epicormics, insect damage, exposed & damaged SR. Offset as will be lost with dam works.
41	Eucalyptus viminalis ssp. pryoriana	14+ 41= 43	5.2	2.4	18	N-S 8 E-W 9	Mat	High	12+	3	2	4	High	R	Growing out of middle of dam embankment, large & fine deadwood, high asymmetrical bifurcation – repeated, insect damage, 1-sided N – allelopathic effect NS trees, fence within TPZ. Offset as will be lost with dam works.
42	Eucalyptus globoidea	43	5.2	2.4	18	N-S 12 E-W 14	Mat	High	12+	3	3	4	High	R	Growing right on boundary fence & drain within SRZ, large & fine deadwood, was bifurcated at base E co-dependant fallen, symmetrical bifurcation up high, NE co-dependant broken off – scar – medium response growth, large hanger held in canopy, mature & young epicormics, insect damage, some peripheral dieback. Offset as will be lost with dam works.

NY.	Q	DDII	mprz	ODIZ	TT-1	337(1.	T O	0:-	TTTT	Struct	Roots		Ret	R/	acument is strictly promoted
No.	Species	DBH	TPZ	SRZ	Hgt~	Wth-	L.S.	Sig.	ULE	Struct	ROOIS	Сру	Value	Ret	Notes
43	Dead	52	m	m 2.7	m	m			yrs					R	Offset as will be lost with dam works.
44	Eucalyptus fulgens (Green Scentbark)	41	4.9	2.5	16	N~S 11 E~W 12	Mat	High	12+	3	3	4	Mod	R	Asymmetrical bifurcation, large & fine deadwood, growing on toe of dam embankment, insect damage, epicormics, E co-dependant top bent S – phototropic effect from #45, W co-dependant bent W. Offset as will be lost with dam works.
45	Eucalyptus fulgens	50	6.0	2.7	20	N~S 13 E~W 14	Mat	High	15+	4	3	3	High	R	Growing at toe of dam embankment, large & fine deadwood, mature & young epicormics, top bent N then self-corrected - phototropic effect #44. Offset as will be lost with dam works.
46	Eucalyptus fulgens	33	4.0	2.2	10	N-S 9 E-W 8	Mat	High	12+	2	2	3	Low	R	Wide asymmetrical bifurcation, exposed SR, growing on TOB, large & fine deadwood, 1-sided NE & bent top - phototropic effect #45, lots of insect damage, thin canopy on W codependant. Offset as will be lost with dam works.
47	Eucalyptus fulgens	110 L.O.T.	13.2	3.4	22	N-S 16 E-W 14	Mat	High	12+	3	2	3	High	R	Lots of exposed & girdled SR, growing on TOB, large & fine deadwood, repeated bifurcation – fused at 1.3m with included bark, mature & young epicormics, insect damage, peripheral dieback, longicorn beetle damage. Offset as will be lost with dam works.

		-													acument is strictly promated
No.	Species	DBH	TPZ	SRZ	Hgt~	Wth~	L.S.	Sig.	ULE	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
		cm	m	m	m	m			yrs				Value	RCI	
48	Eucalyptus obliqua	130 Est. L.O.T	15.0	3.8 Est.	26	N-S 16 E-W 24	Mat	High	7+	3	3	4	High	Ret	Repeated bifurcation with included bark – N co-dependant broken – large hanger in canopy, 1-sided S&E, W limbs have peripheral dieback, rangy, lost large limbs, mature & young epicormics, lots of large & fine deadwood, Sweet Pittosporum at base.
49	Eucalyptus obliqua	144 L.O.T	15.0	3.8	26	N~S 28 E~W 26	Mat	High	12+	3	3	4	High	Ret	Lots of large & fine deadwood, lost large limbs, repeated bifurcation, 1-sided E, epicormics, internal fence within TPZ, Sweet Pittosporum at base, exposed SR, NW co-dependant dead & broken – retrenching, flexure wood. Pruneable.
50	Eucalyptus globoidea	82 L.O.T	9.8	3.2	25	N~S 21 E~W 17	Mat	High	12+	3	3	3	High	Ret	Was bifurcated up high – lost E codependant – hanging in canopy – scar remains – medium response growth, 1-sided E, flexure wood, large & fine deadwood, mature & young epicormics, bulges at limb junctions, Sweet Pittosporum at base.
51	Eucalyptus globoidea	18	2.2	1.9	12	N~S 5 E~W 8	Mat	High	7+	3	3	3	Low	Ret	Asymmetrical bifurcation up high - repeated, W co-dependant dead, large & fine deadwood, insect damage, 1-sided E, epicormics.
52	Eucalyptus globoidea	13+ 15= 20	2.4	2.5	8	N~S 6 E~W 10	Mat	High	7+	3	3	3	Low	Ret	Bifurcated from base, bent & 1-sided E, insect damage, large & fine deadwood, epicormics.
53	Dead	81 L.O.T		3.2										Ret	

No.	Species	DBH	TPZ	SRZ	Hgt~	Wth-	L.S.	Sig.	ULE	Struct	Roots	Сру	Ret	R/	Notes
	_	cm	m	m	m	m			yrs				Value	Ret	
54	Eucalyptus globoidea	87 L.O.T	10.4	3.5	26	N~S 20 E~W 18	Mat	High	15+	4	3	4	High	Ret	slight lean W, exposed & girdled SR, wide symmetrical bifurcation ~ repeated, mature & young epicormics.
55	Eucalyptus globoidea	54	6.5	3.3	15	N~S 16 E~W 12	Mat	High	7+	2	3	3	Low	Ret	Repeated asymmetrical bifurcation from base, mature & young epicormics, fine & large deadwood, 1-sided & bent top E – phototropic effect from #54, N co-dependant dead, insect damage.
56	Eucalyptus globoidea	94+ 111 = 147 L.O.T	15.0	4.4	28	N~S 31 E-W 24	Mat	High	12+	4	3	4	High	Ret	Multi-trunked from base – repeated bifurcation, S co-dependant dead, W co-dependant overextended N, fine & large deadwood, insect damage, lost large limbs, hollows at base, 1-sided N, phototropic effect #54. Deadwooding & structural prune.
57	Eucalyptus radiata (Narrow-leaf Peppermint)	74 L.O.T	8.9	3.1	13	N-S 10 E-W 7	Mat +	High	5+/	1	3	3	Low	Ret	Bifurcated up high – N & E co- dependants dead – rot in trunks, large & fine deadwood, had mistletoe, ~100% mature & young epicormics, Sweet Pittosporum at base.
58	Eucalyptus globoidea	96 L.O.T	11.5	3.4	26	N-S 18 E-W 21	Mat	High	12+	3	2	4	High	Ret	NS. Large & fine deadwood, drain, fence & road within SRZ, exposed SR, broken limbs, high E-W asymmetrical bifurcation, peripheral dieback, mature & young epicormics, good buttressing/taper.
59	Eucalyptus fulgens	42	5.0	2.4	15	N~S 6	Mat	High	7+	2	2	3	Mod	Ret	NS. Bent, leaning & massively overextended S, allelopathic effect

No.	Species	DBH	TPZ	SRZ	Це	Wth~	L.S.	Sic	ULE	Struct	Roots	Сру	Ret	R/	Notes
NO.	species	cm	m	n SKZ	Hgt~	m win-	L.S.	Sig.	vrs		1000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Value	Ret	Mores
		CIII	111	111	m	E~W 11			yıs						from #58, mature & young epicormics including up trunk, peripheral dieback, large & fine deadwood, fence, drain & road within SRZ.
60	Eucalyptus fulgens	23+ 16= 28	3.4	2.2	7	N~S 7 E~W 11	Mat	High	10+	2	3	4	Low	Ret	mature & young epicormics, large & fine deadwood, fence right at base – SRZ, drain within TPZ, insect damage, curly limbs, Sweet Pittosporum at base.
61	Eucalyptus fulgens	39	4.7	2.4	17	N-S 11 E-W 7	Mat	High	7+	2	2	3	Mod	R	NS. Symmetrical bifurcation up high with included bark, E & W co-dependants apical dominance dead, large & fine deadwood, mature & young epicormics, fence, drain & road within SRZ, 1-sided & majority of canopy E, allelopathic effect #58, crossing limbs. Offset as will be considered lost due to works.
62	Eucalyptus globoidea	19	2.3	1.8	8	N~S 6 E~W 4	Mat	High	7+	2	2	4	Low	R	NS. Maybe a lignotuber of #64, growing right on boundary fence – SRZ, large & fine deadwood, symmetrical bifurcation, N codependant bent N, epicormics. Offset as will be considered lost due to works.
63	Eucalyptus fulgens	21	2.5	2.0	10	N~S 8 E~W 4	Mat	High	10+	3	3	3	Mod	R	NS. Asymmetrical bifurcation up high, N co-dependant bent N, fence within SRZ, drain & road within TPZ, large & fine deadwood, epicormics.

NTo	Creacian	DDII	TD7	CD7	TTat	33741	T C	Cia	ULE	Struct	Roots	Сру	Ret	R/	Nation
No.	Species	DBH	TPZ	SRZ	Hgt~	Wth-	L.S.	Sig.		Siruci	ROOIS	Сру	Value	Ret	Notes
		cm	m	m	m	m			yrs						Offset as will be considered lost due to works.
64	Eucalyptus globoidea	58	7.0	2.8	26	N~S 16 E~W 17	Mat	High	10+	3	2	3	High	R	NS. Exposed SR, asymmetrical bifurcation up high, nice taper, large & fine deadwood, , epicormics, insect damage, peripheral dieback, drain & fence within SRZ, road within TPZ. Offset as will be considered lost due to works.
65	Eucalyptus globoidea	31	3.7	2.2	15	N-S 11 E-W 10	Mat	High	7+	2	2	3	Low	R	NS. Repeated symmetrical bifurcation up high, S co-dependant overextended S, phototropic effect from #64, scar S side at base, lots of insect damage, mature & young epicormics, large & fine deadwood. Offset as will be considered lost due to works.
66	Eucalyptus viminalis ssp. pryoriana	46	5.5	2.6	14	N-S 10 E-W 12	Mat	High	10+	3	2	4	Mod	R	NS. Growing right on boundary fence & dam embankment within SRZ, drain & road within TPZ, repeated bifurcation, large & fine deadwood, mature & young epicormics, peripheral dieback, insect damage. Offset as will be considered lost due to works.
67	Eucalyptus fulgens	21+ 10= 23	2.8	1.8	7	N~S 3 E~W 6	Mat +	High	5+	1	3	2	Low	R	NS. Repeated bifurcation, large & fine deadwood, insect damage, epicormics, apical dieback, fence within SRZ. Offset as will be considered lost due to works.

		DDII	more	ODEZ	TT /	337/1	T 0	a:	T TT T						ocument is strictly prohibited
No.	Species	DBH	TPZ	SRZ	Hgt~	Wth-	L.S.	Sig.	ULE	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
		cm	m	m	m	m			yrs					ROI	
68	Eucalyptus viminalis ssp. pryoriana	170 L.O.T	15.0	4.1	28	N-S 14 E-W 16	Mat	High	12+	3	2	4	High	R	NS. Growing on top of drain bank ~ & road within SRZ, insect damage, large & fine deadwood, mature & young epicormics, Ivy growing up trunk, bifurcated at ~1.4m – N codependant at base – scar & rot at base ~ good response growth. Offset as will be considered lost due to works.
69	Eucalyptus fulgens	47	5.6	2.6	14	N~S 6 E~W 5	Mat	High	5+	1	2	3	Low	R	NS. Lost apical dominance – all canopy is epicormics, repeated bifurcation, Ivy up trunk, drain & road within SRZ, large & fine deadwood. Offset as will be considered lost due to works.
70	Eucalyptus fulgens	41	4.9	2.5	10	N~S 5 E~W 8	Mat	High	5+	1	3	3	Low	R	NS. Lost apical dominance, mature & young epicormics, fence within SRZ, drain & road within TPZ, large & fine deadwood, lignotuber, Sweet Pittosporum at base. Offset as will be considered lost due to works.
71	Eucalyptus fulgens	22	2.6	2.1	12	N-S 3 E-W 3	Mat	High	5+	1	3	3	Low	R	Repeated bifurcation, E co-dependant dead, large & fine deadwood, peripheral dieback, drain & road within SRZ, Sweet Pittosporum at base. Offset as will be considered lost due to works.
72	Eucalyptus fulgens	38	4.6	2.4	12	N-S 8 E-W 4	Mat	High	5+	2	2	3	Low	R	NS. Bent top S, faunal browsing, insect damage, large & fine deadwood, drain & road within SRZ. Offset as will be considered lost due to works.

		DDIT	mprz	ODEZ	TT (337/1	т о	0.	T TT T	Struct	Roots		Ret		acument is strictly promated
No.	Species	DBH	TPZ	SRZ	Hgt~	Wth-	L.S.	Sig.	ULE	Struct	KOOIS	Сру	Value	R/ Ret	Notes
		cm	m	m	m	m			yrs						
73	Eucalyptus fulgens	30	3.6	2.2	8	N~S 4 E~W 4	Mat	High	5+	3	3	4	Low	R	NS. Main canopy N, lignotubers, epicormics, Sweet Pittosporum at base, drain & road within TPZ. Offset as will be considered lost due to works.
74	Eucalyptus fulgens	28	3.4	2.0	8	N~S 4 E~W 4	Mat	High	5+	2	3	4	Low	R	NS. Leaning E from base, main canopy overextended NE, Sweet Pittosporum at base, drain & road within TPZ, large & fine deadwood. Offset as will be considered lost due to works.
75	Eucalyptus fulgens	32	3.8	2.3	14	N~S 10 E~W 8	Mat	High	5+	2	3	3	Low	R	NS. Main trunk on~45° E, mature epicormics, large & fine deadwood, insect damage, Sweet Pittosporum at base. Offset as will be considered lost due to works.
76	Eucalyptus fulgens	28	3.4	2.2	14	N~S 5 E~W 8	Mat	High	5+	1	3	3	Low	R	NS. Main trunk on 90° bend, repeated bifurcation, mature epicormics, large & fine deadwood, fence within SRZ. Offset as will be considered lost due to works.
77	Eucalyptus fulgens	32+ 36+ 29= 56	6.7	2.9	16	N~S 9 E~W 7	Mat	High	7+	2	3	3	Low	R	NS. Asymmetrical bifurcation from base, S co-dependant ~45° to SE – broken off, large & fine deadwood, mature & young epicormics, fence within SRZ, Sweet Pittosporum at base. Offset as will be considered lost due to works.
78	Eucalyptus fulgens	36+ 23+ 17=	5.5	2.8	16	N~S 10	Mat	High	10+	3	2	4	High	R	NS. Top bent W around #77, repeated bifurcation from base, mature & young epicormics, large &

No.	Species	DBH	TPZ	SRZ	Hgt~	Wth-	L.S.	Sig.	ULE	Struct	Roots	Сру	Ret	R/	Notes
	_	cm	m	m	m	m			yrs				Value	Ret	
		46				E~W 8									fine deadwood, has had some pruning, drain & road within SRZ. Offset as will be considered lost due to works.
79	Eucalyptus fulgens	54	6.5	2.7	18	N~S 10 E~W 10	Mat	High	7+	2	3	3	Low	R	NS. Mostly epicormics, large & fine deadwood, fence within SRZ, drain & road within TPZ. Offset as will be considered lost due to works.
80	Eucalyptus fulgens	21	2.5	2.0	8	N~S 6 E~W 5	Mat	High	5+	2	3	3	Low	R	NS. Fence within SRZ, bent ~70° N, mature & young epicormics, large & fine deadwood. Offset as will be considered lost due to works.
81	Eucalyptus fulgens	50	6.0	2.8	16	N~S 14 E~W 9	Mat	High	7+	2	3	3	Mod	R	NS. Ivy up trunk, growing on edge of drain bank & road within SRZ, peripheral dieback, high symmetrical bifurcation, large & fine deadwood, mature & young epicormics. Offset as will be considered lost due to works.
82	Eucalyptus fulgens	42 36= 55	6.6	3.2	16	N~S 12 E~W 10	Mat	High	7+	3	3	4	Mod	R	NS. Symmetrical bifurcation from base – repeated, large gall on main trunk, lots of mature & young epicormics, large & fine deadwood, peripheral dieback. Offset as will be considered lost due to works.
83	Eucalyptus fulgens	33	4.0	2.4	11	N~S 9 E~W 7	Mat	High	10+	3	3	4	Mod	R	NS. Main trunk ~70° & top bent E – self-corrected, repeated bifurcation, fence within SRZ, drain & road within TPZ, mature & young epicormics, fine deadwood. Offset as will be considered lost due to works.

	_	•		•	,										acument is strictly promated
No.	Species	DBH cm	TPZ m	SRZ m	Hgt~ m	Wth- m	L.S.	Sig.	ULE yrs	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
84	Eucalyptus fulgens	111 L.O.T	13.2	3.7	24	N-S 18 E-W 18	Mat	High	15+	3	3	4	High	R	Growing as a SA in paddock, broken limbs – including large limb SW side – scar with good response growth – gap in canopy, exposed & damaged SR, large & fine deadwood, mature & young epicormics, peripheral dieback S side. Offset as will be considered lost due to works.
85	Eucalyptus viminalis ssp. pryoriana	12+ 11+ 12+ 11+ 6= 28	3.4	2.2	7	N~S 8 E~W 6	Mat	High	7+	1	1	4	Low	R	Fallen in paddock area – main trunk horizontal ~8m them grown up again, large & fine deadwood, repeated bifurcation, epicormics. Offset as will be considered lost due to works.
86	Dead	132 L.O.T		3.9										Ret	Dead. Offset as will be considered lost due to works. Check for fauna, pull test for integrity.
A	Eucalyptus fulgens	41	4.9	2.9	12	N~S 7 E~W 7	Mat	High	10+	3	2	3	High	Ret	NSS. Symmetrical bifurcation from ~40cm with included bark – crack & scar at initial union – W co-dependant dead, drain & road within SRZ, fence within TPZ, exposed SR, 1-sided S, large & fine deadwood, mature & young epicormics.
В	Dead	44													NSS. Stump at ~9m
С	Eucalyptus fulgens	59	7.1	3.9	15	N~S 11 E~W 9	Mat	High	7+	2	2	3	High	Ret	NSS. Drain within SRZ, road & fence within TPZ, main trunk ~45° lean SE, lignotuber, rubbing on trunk from #B, repeated bifurcation, large & fine

	10.	DDIT	THE PER	anr.	TT (337/1	T 0	a:	T TT T						acument is strictly promaned
No.	Species	DBH	TPZ	SRZ	Hgt~	Wth-	L.S.	Sig.	ULE	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
		cm	m	m	m	m			yrs						deadwood, old limb loss – good response growth, peripheral dieback.
D	Eucalyptus fulgens	74	8.9	3.2	18	N-S 12 E-W 9	Mat	High	10+	3	2	4	High	Ret	NSS. Drain within SRZ, road & fence within TPZ, exposed SR, broken limbs, large & fine deadwood, mature & young epicormics, majority of canopy to E&S, nest box strapped on trunk, apical dieback.
Е	Eucalyptus fulgens	63+ 50= 80	9.6	3.3	18	N~S 9 E~W 12	Mat	High	7+	2	2	4	High	Ret	within TPZ, exposed SR, large & fine deadwood, mature & young epicormics, bracket fungi, W codependant has dieback.
F	Eucalyptus fulgens	50	6.0	2.7	15	N~S 10 E~W 7	Mat +	High	5+	2	2	2	High	Ret	NSS. Growing right on edge of drain – SRZ, road & fence within TPZ, exposed SR, bent trunk to S, broken main trunk, apical dieback, all canopy is mature & young epicormics, large & fine deadwood.
G	Eucalyptus globoidea (White Stringybark)	69+ 39= 79	9.5	3.4	18	N~S 12 E~W 16	Mat	High	10+	3	2	3	High	Ret	NSS. Drain within SRZ, road & fence within TPZ, asymmetrical bifurcation from base ~ repeated, large & fine deadwood, mature & young epicormics, main trunk broken & scarring, apical dieback.
Н	Eucalyptus globoidea	52+ 45= 69	8.3	3.2	14	N-S 7 E-W 8	Mat	High	10+	3	2	3	High	Ret	NSS. Drain within SRZ, road within TPZ, symmetrical bifurcation from base – repeated, large & fine deadwood, scar E side.
I	Eucalyptus fulgens	47	5.6	2.5	12	N~S 7	Mat	High	7+	2	1	4	High	Ret	NSS. Drain & erosion within SRZ, road within TPZ, exposed SR, main

No.	Species	DBH	TPZ	SRZ		Wth-	L.S.	Sig.	ULE	Struct	Roots	Сру	Ret Value	R/ Ret	Notes
		cm	m	m	m	m			yrs						
						E~W 8									trunk ~50° S, wide bifurcation, large & fine deadwood, mature & young epicormics.

Legend:

DBH = Diameter at Breast Height, in centimetres, BH=Breast Height	
L.O.T.= Large Old Tree, 70cm in EVC 16	Cpy = Canopy health, scored out of 5
TPZ = Tree Protection Zone	Ret Value = Retention Value
SRZ = Structural Root Zone SR = Structural Roots	R/Ret = tree proposed to be R=Removed/Ret=Retained
Hgt = Height, measured in metres	NGL = Natural Ground Level
Wth = Width, measured in metres	RZ = Root Zone
L.S. = Life stage: Young, Mat = Mature, Sen = Senescing	NS = Nature-strip
	ND = Next Door property to N, S, E, W
Sig. = Significance, assessed as high, moderate or low	TOB = Top of Bank
ULE = Useful Life Expectancy, estimated in years	DS = Defendable Space
Struct. = Structure, scored out of 5	CS = Canopy Separation
Roots = root environment health, scored out of 5	LCR = Live Crown Ratio

Tree retention/removal/offset justification table

No.	Species	DBH	Sig.	ULE	Ret	R/	Offset	Notes	Permit required
	_	cm		yrs	Value	Ret	Y/N		_
1	Eucalyptus globoidea (White Stringybark)	91 L.O.T	High	10+	High	Ret	Y	Offset as consequential loss due to proximity of boundary	No -retained
2	Cupressus x leylandii (Leyland's Cypress)	21	Mod	15+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2

No.	Species	DBH	Sig.	ULE	Ret	R/	Offset	Notes	Permit required
110.	operios	cm	ارون	yrs	Value	Ret	Y/N		1 ornin required
3	Cupressus x leylandii	40+ 28+ 27= 56	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
4	Cupressus x leylandii	32+ 32+ 32+ 32+ 23= 60	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
5	Betula alba (Silver Birch)	6+ 21= 22	Mod	7+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt -not substantial tree
6	Betula alba	19+ 10+ 10+ 10= 26	Mod	5+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt -not substantial tree
7	<i>Quercus robur</i> (English Oak)	51	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	Yes
8	Betula alba	22	Mod	7+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt-not substantial tree
9	Quercus robur	43	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	Yes
10	Eucalyptus globoidea	140 Estimated L.O.T	Mod	15+	High	Ret	N	NDW. Third party ownership	No ~ retained
11	Robinia pseudoacacia (Black Locust)	24+ 24= 34 Est.	Mod	15+	Low	Ret	N	NDW. Third party ownership	No - retained
12	Cupressus x leylandii	38+	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2

No	Crosica	Dett	Cic	g. ULE Ret			Officet	Notes	
No.	Species	DBH cm	Sig.	yrs	Value	R/ Ret	Offset Y/N	Notes	Permit required
		110		yrs	7 002010	KCI	1/1		
		116							
		Est.							
13	Photinia	12+	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No~ exempt under
	<i>robusta</i> (Red-	12+							52.12~2
	leaf Photinia)	12+							
		10+							
		8=							
		24							
14	Almua alutinasa	Est. 18+	Mod	5+	Lour	R	N	Exatic planted anaging exampt from effecting	No axampt undan
14	Alnus glutinosa	8+	Moa	5+	Low	K	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
	(Common Alder)	10+							32.12~2
		10=							
		24							
		Est.							
15	Photinia	12+	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under
	robusta	12+							52.12~2
		16+							
		14+							
		12=							
		30							
16	Cumagana y	Est. 100	Mod	7+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under
10	Cupressus x leylandii	Est.	Moa	1 +	LOW	K	1	Exone planted species exempt from offsetting	52.12~2
	icytatiun								04.14~4
17	17 <i>Photinia</i>	8+8	Mod	12+	Mod	R	N	Exotic planted species exempt from offsetting	No~ exempt under
	robusta	+8+							52.12~2
		8+8							
		=18							
		Est.							

Nο	Species	DBH	Sic	ULE	Ret	R/	Offset	Notes	
No.	species	cm	Sig.	yrs	Value	R/ Ret	Y/N		Permit required
18	Cupressus x leylandii	42 Est.	Mod	12+	Mod	R	N	Exotic planted species exempt from offsetting	No- exempt under 52.12-2
19	Photinia robusta	6+6 +8+ 8+ 10= 17 Est.	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No- exempt under 52.12.2
20	Cupressus x leylandii	62 Est.	Mod	12+	Mod	Ret	N	Exotic planted species exempt from offsetting	No- exempt under 52.12-2
21	Alnus glutinosa	28 Est.	Mod	7+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
22	Photinia robusta	6+6 +8+ 8+ 10= 17 Est.	Mod	12+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
23	Alnus glutinosa	22+ 24+ 3+4 =33 Est.	Mod	10+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
24	Photinia robusta	4+4 +9+ 12= 16 Est.	Mod	12+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
25	Alnus glutinosa	21+ 21+ 38= 48 Est.	Mod	5+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2

No.	Species	DBH	Sig.	ULE	Ret	R/	Offset	Notes	Permit required
. = -	*	cm	3	yrs	Value	Ret	Y/N		
26	Photinia robusta	9+6 +4+ 4+4 =13	Mod	12+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
27	Cupressus x leylandii	Est. 50+ 18+ 24= 58 Est.	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
28	Cupressus x leylandii	54+ 22= 58 Est.	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
29	Cupressus x leylandii	55+ 20+ 20= 62 Est.	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
30	Alnus glutinosa		Mod	7+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
31	Photinia robusta	8+6 +10 +12 =19 Est.	Mod	12+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
32	Cupressus x leylandii	54 Est.	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
33	Cupressus x leylandii	46 Est.	Mod	12+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
34	Photinia robusta	9+9 +8+ 12=	Mod	12+	Low	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2

No.	Species	DBH cm	Sig.	ULE yrs	Ret Value	R/ Ret	Offset Y/N	Notes	Permit required
		19 Est.							
35	Cupressus x leylandii	46+ 18= 49 Est.	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
36	Photinia robusta	4+6 +4+ 4+4 =10 Est.	Mod	15+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
37	Callistemon salignus (Willow Bottlebrush)	20+ 10+ 10+ 19= 31Est.	Mod	12+	Mod	R	N	Exotic planted species exempt from offsetting	No-exempt under 52.12-2
38	Betula alba	18	Mod	10+	Low	R	N	Exotic planted species exempt from offsetting	No- exempt- not substantial tree
39	Eucalyptus viminalis ssp. pryoriana (Gippsland Manna Gum)	36+ 36+ 60= 79	High	15+	High	R	Y	Offset as will be lost with dam works.	Yes
40	Eucalyptus obliqua (Messmate)	54	High	15+	High	R	Y	Offset as will be lost with dam works.	Yes
41	Eucalyptus viminalis ssp. pryoriana	14+ 41= 43	High	12+	High	R	Y	Offset as will be lost with dam works.	Yes
42	Eucalyptus globoidea	43	High	12+	High	R	Y	Offset as will be lost with dam works.	Yes

No.	Species	DBH cm	Sig.	ULE yrs	Ret Value	R/ Ret	Offset Y/N	Notes	Permit required
43	Dead	52			Low	R	Y	Offset as will be lost with dam works.	Yes
44	Eucalyptus fulgens (Green Scentbark)	41	High	12+	Mod	R	Y	Offset as will be lost with dam works.	Yes
45	Eucalyptus fulgens	50	High	15+	High	R	Y	Offset as will be lost with dam works.	Yes
46	Eucalyptus fulgens	33	High	12+	Low	R	Y	Offset as will be lost with dam works.	Yes
47	Eucalyptus fulgens	110 VLOT	High	12+	High	R	Y	Offset as will be lost with dam works.	Yes
48	Eucalyptus obliqua	130 Est. VLOT	High	7+	High	Ret	N	Retained	No- retained
49	Eucalyptus obliqua	144 L.O.T	High	12+	High	Ret	N	Retain >4m from new boundary -high retention value habitat tree within proposed conservation reserve	No~ retained
50	Eucalyptus globoidea	82 L.O.T	High	12+	High	Ret	N	Retain >4m from new boundary high retention value habitat tree within proposed conservation reserve	No~ retained
51	Eucalyptus globoidea	18	High	7+	Low	Ret	N	Retain	No~ retained
52	Eucalyptus globoidea	13+ 15= 20	High	7+	Low	Ret	N	Retain	No~ retained
53	Dead	81 L.O.T				Ret	N	Retain >4m from new boundary high retention value habitat tree within proposed conservation reserve	No- retained
54	Eucalyptus globoidea	87 L.O.T	High	15+	High	Ret	N	Retain >4m from new boundary high retention value habitat tree within proposed conservation reserve	No~ retained

No.	Species	DBH cm	Sig.	ULE yrs	Ret Value	R/ Ret	Offset Y/N	Notes	Permit required
55	Eucalyptus globoidea	54	High	7+	Low	Ret	N	Retain	No- retained
56	Eucalyptus globoidea	94+ 111 = 147 L.O.T	High	12+	High	Ret	N	Retain >4m from new boundary high retention value habitat tree within proposed conservation reserve	No- retained
57	Eucalyptus radiata (Narrow-leaf Peppermint)	74 L.O.T	High	5+/	Low	Ret	N	Retain >4m from new boundary high retention value habitat tree within proposed conservation reserve	No- retained
58	Eucalyptus globoidea	96 L.O.T	High	12+	High	Ret	Y	NS. Third party ownership. Retain	No~ retained
59	Eucalyptus fulgens	42	High	7+	Mod	Ret	Y	NS. Third party ownership. Retain	No~ retained
60	Eucalyptus fulgens	23+ 16= 28	High	10+	Low	Ret	Y	NS. Third party ownership. Retain	No -retained
61	Eucalyptus fulgens	39	High	7+	Mod	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
62	Eucalyptus globoidea	19	High	7+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
63	Eucalyptus fulgens	21	High	10+	Mod	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
64	Eucalyptus globoidea	58	High	10+	High	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes

No.	Species	DBH	Sig.	ULE	Ret	R/	Offset	Notes	Permit required
	•	cm		yrs	Value	Ret	Y/N		1
65	Eucalyptus globoidea	31	High	7+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
66	Eucalyptus viminalis ssp. pryoriana	46	High	10+	Mod	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc	Yes
67	Eucalyptus fulgens	21+ 10= 23	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
68	Eucalyptus viminalis ssp. pryoriana	170 VLOT	High	12+	High	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
69	Eucalyptus fulgens	47	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
70	Eucalyptus fulgens	41	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
71	Eucalyptus fulgens	22	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
72	Eucalyptus fulgens	38	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
73	Eucalyptus fulgens	30	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
74	Eucalyptus fulgens	28	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes

No.	Species	DBH	Sig.	ULE	Ret	R/	Offset	Notes Permit req	Permit required
110.	бреске	cm	Jug.	yrs	Value	Ret	Y/N	Tiolog	Territ required
75	Eucalyptus fulgens	32	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
76	Eucalyptus fulgens	28	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
77	Eucalyptus fulgens	32+ 36+ 29= 56	High	7+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
78	Eucalyptus fulgens	36+ 23+ 17= 46	High	10+	High	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
79	Eucalyptus fulgens	54	High	7+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
80	Eucalyptus fulgens	21	High	5+	Low	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
81	Eucalyptus fulgens	50	High	7+	Mod	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
82	Eucalyptus fulgens	42 36= 55	High	7+	Mod	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
83	Eucalyptus fulgens	33	High	10+	Mod	R	Y	NS. Third party ownership. Offset as will be considered lost due to unavoidable works for crossovers etc.	Yes
84	Eucalyptus fulgens	111 VLOT	High	15+	High	R	Y	Offset as will be considered lost due to works. Check for fauna and hollow occupancy.	Yes

No.	Species	DBH	Sig.	ULE	Ret	R/	Offset	Notes	Permit required
		cm		yrs	Value	Ret	Y/N		_
85	Eucalyptus viminalis ssp. pryoriana	12+ 11+ 12+ 11+ 6= 28	High	7+	Low	R	Y	Offset as will be considered lost due to works.	Yes
86	Dead	132 VLOT	Mod	Na	High	Ret	Y	Offset as will be considered lost due to works. Check for fauna and hollow occupancy.	Yes~ considered lost
A	Eucalyptus fulgens	41	High	10+	High	Ret	N	NS. Third party ownership. Retain with encroachment from works for crossovers unlikely.	No- retained
В	Eucalyptus fulgens	44	High	~	Mod	Ret	N	Retain – dead unaffected NS. Third party ownership. Retain with no encroachment from works for crossovers	No~ retained
С	Eucalyptus fulgens	59	High	7+	High	Ret	N	NS. Third party ownership. Retain with minor encroachment from works for crossovers etc.	No~ retained
D	Eucalyptus fulgens	74 LOT	High	10+	High	Ret	N	Large old tree -protect during works. NS. Third party ownership. Retain with minor encroachment from works for crossovers to access lots 211 and services	No- retained
E	Eucalyptus fulgens	63+ 50= 80	High	7+	High	Ret	N	Protect during works. NS. Third party ownership. Retain with encroachment from works for crossovers to access lots 211/212.	No- retained
F	Eucalyptus fulgens	50	High	5+	High	Ret	N	NS. Third party ownership. Retain with encroachment from works for crossovers unlikely.	No- retained
G	Eucalyptus globoidea	69+ 39= 79	High	10+	High	Ret	N	Protect during works. NS. Third party ownership. Retain with encroachment from works for crossovers to access lots 212/213.	No- retained

No.	Species	DBH	Sig.	ULE	Ret	R/	Offset	Notes	Permit required
		cm		yrs	Value	Ret	Y/N		
Н	Eucalyptus globoidea	52+ 45= 69	High	10+	High	Ret	N	NS. Third party ownership. Retain with minor encroachment from works for crossovers likely.	No- retained
Ι	Eucalyptus fulgens	47	High	7+	High	Ret	N	NS. Third party ownership. Retain with encroachment from works for crossovers unlikely.	No- retained

Pictorial Assessment

Tree 1 root zone

Tree 1 canopy

Tree 2 root zone

Tree 2 canopy

Tree 3 root zone

Tree 3 canopy

Tree 4 root zone

Tree 4 canopy

Tree 5 root zone

Tree 5 canopy

Tree 6 root zone

Tree 6 canopy

Tree 7 root zone

Tree 7 canopy

Tree 8 root zone

Tree 8 canopy

Rabbit warren under #8.

Sweet Pittosporum & Cherry Plum in paddock

Tree 9 root zone

Tree 9 canopy

Tree 10 root zone

Tree 10 canopy

Tree 11 root zone

Tree 11 canopy

Tree 12 root zone

Tree 12 canopy

Tree 13 root zone

Tree 13 canopy

Tree 14 root zone

Tree 14 canopy

Tree 15 root zone

Tree 15 canopy

Tree 16 root zone

Tree 16 canopy

Tree 17 root zone

Tree 17 canopy

Tree 18 root zone

Tree 18 canopy

Tree 19 root zone

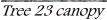
Tree 19 canopy

Tree 20 canopy

Tree 20 trunk

Tree 21 canopy

Tree 21 trunk



Tree 22 canopy

Tree 22 trunk

Guttering on top of limbs

Tree 24 canopy

Tree 24 trunk

Tree 25 canopy

Tree 25 trunk

Tree 26 canopy

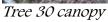
Tree 26 trunk

Tree 27 canopy

Tree 27 trunk

Tree 28 canopy

Tree 28 trunk



Tree 29 canopy

Tree 29 trunk

Tree 30 trunk

Tree 31 canopy

Tree 31 trunk

Tree 32 canopy

Tree 32 trunk

Tree 33 canopy

Tree 33 trunk

Tree 34 canopy

Tree 34 trunk

Tree 35 root zone

Tree 35 canopy

Tree 36 root zone

Tree 36 canopy

Tree 37 root zone

Tree 37 canopy

Tree 38 root zone

Tree 38 canopy

Tree 39 root zone

Tree 39 canopy

Tree 40 root zone

Tree 40 canopy

Tree 41 root zone

Tree 41 canopy

Tree 42 root zone

Tree 42 canopy

Tree 43

Tree 44 root zone

Tree 44 canopy

Tree 45 root zone

Tree 45 canopy

Tree 46 root zone

Tree 46 canopy

Tree 47 root zone

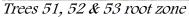
Tree 47 canopy

Tree 48 root zone

Tree 48 canopy

Tree 49 root zone

Tree 49 canopy



Tree 50 root zone

Tree 50 canopy

Trees 51,52 & 53 canopies

Trees 54 & 55 root zone

Trees 54 & 55 canopies

Tree 56 root zone

Tree 56 canopy

Tree 49 root zone

Tree 49 trunk

Tree 54 root zone

Tree 54 canopy

Tree 55 root zone

Tree 55 canopy

Tree 56 root zone

Tree 56 canopy

Tree 57 root zone

Tree 57 canopy

Tree 58 root zone

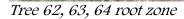
Tree 58 canopy

Tree 59 root zone

Tree 59 canopy

Tree 60 root zone

Tree 60 canopy



Tree 61 root zone

Tree 61 canopy

Tree 62, 63, 64 canopy

Tree 65 root zone

Tree 65 canopy

Tree 66 root zone

Tree 66 canopy

Tree 67 root zone

Tree 67 canopy

Tree 68 root zone

Tree 68 canopy Tree 68 root zone

Tree 69 root zone

Tree 69 canopy

Tree 70 root zone

Tree 70 canopy

Tree 71 root zone

Tree 71 canopy

Tree 72 root zone

Tree 73 root zone

Tree 74 root zone

Tree 75 root zone

Trees canopies 72-75

Tree 76 root zone

Tree 77 root zone

Tree 78 root zone

Trees 76~78 canopies

Trees 76~78 canopies

Trees 79-83 root zone & canopies

Trees 81~83 canopies

Trees 81-83 root zones

Tree 79-81 canopies

Tree 79-81 root zones

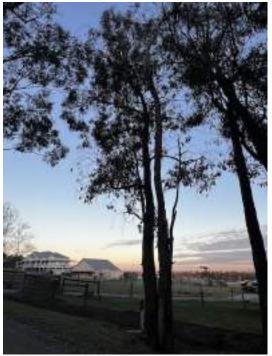
Trees 75-83 root zone and canopies

Tree 84 root zone

Tree 84 canopy

Tree 85 root zone

Tree 85 canopy



Tree 86 root zone

Tree 86 canopy

Tree A root zone

Tree A canopy

Tree B branching

Tree B

Tree C root zone

Tree C canopy

Tree D root zone

Tree D canopy

Tree E root zone & fungi

Tree E canopy

Tree Froot zone

Tree F canopy

Tree G root zone

Tree G canopy

Tree H root zone

Tree H canopy

Petty Rd facing west.

Petty Rd facing east

Facing E, SE, S, SW

Facing NW, N, NE

Facing NE, E, SE, windbreak planting.

Shrubs in southern section

Windbreak - shrubs in southern section, facing NE & SE

Windbreak facing N, E, S

Windbreak facing E, SE

Eastern paddock facing N

Recommendations & Conclusions

4.0

This proposal to sub-divide the property into 30 house lots will see the loss of trees, including L.O.T./V.L.O.Ts (Large and Very Large Old Trees) as is often the case with any development, therefore a compromise must be reached.

Vegetation on 2/3 of the property has long been managed as pasture and grazed by sheep and horses prior to being orchards many decades ago.

The other 1/3 of the property is predominantly indigenous vegetation which has been limited to a 1.334Ha to the west of the property, and currently has the highest indigenous floral biodiversity on the site. Many Large and Very Large trees in this area have avoided removal, loss and offsetting by the location of the proposed road and it is proposed that this area be set aside permanently as a reserve, to serve as a sanctuary for fauna and flora and public open space recreation for new residents.

While it is never ideal to lose indigenous vegetation, the reservation of approximately 1/3 of the site to conservation is an excellent result. This is an important bio-link as a habitat corridor. The other properties and lots in the immediate area are very much cleared and have also recently been or in the process of being subdivided and this proposal will fit with the broader neighbourhood character which is being established as a residential area.

Trees proposed for removal (74 trees total)

Trees # 2-9 are exotic planted trees located on the north-western part of the property and proposed for removal to facilitate the development of the smaller residential lots #301-303.

Trees #12-37 are exotic planted trees located on the subject property and form part of a planted mixed boundary screen along the eastern boundary. These trees (some of which are in poor condition) will require removal for the establishment of the lots 307-311 plus 202 for their BAL ratings and building envelopes.

Tree #38 is an exotic planted tree at the top of the dam, which requires removal for the dam works to establish a retarding basin during construction and then be established as a house lot 215.

Trees #39-47 are indigenous trees located to the south on the subject property located around the existing dam area, many self-seeded into the dam wall. These trees will require removal due to the earth works involved in establishing the retarding basin during construction and the subsequent establishment of lots 211-215 as residential blocks. These trees will require offsetting and have been mapped in the NVR report.

Trees #61-83 are indigenous trees located on the nature-strip which were assessed for potential impact, and unfortunately these trees will require removal for the establishment of the road, installation of underground services and the creation of a crossovers to the lots 209-213 from Petty Rd. Some of these trees #61-67 are located on the nature-strip below the existing dam (to be modified and removed) and will be considered lost also due to these works. Trees # 68-83 should be retained as long as possible until the establishment of the house lots 209-212 requires their removal to construct crossovers. By this stage it is hoped that the conservation reserve will have accommodated for any habitat loss. These trees have been mapped in the NVR report and considered lost and are proposed to be offset.

Trees #84 & 86 are Very Large Old Trees located on the subject property to the south-east located as scattered trees in the existing paddock. Tree #84 is an indigenous Green Scentbark of high habitat and retention value but will be lost to the establishment of the new access road and its retention will render this subdivision in accessible and not able to be developed or extended to the east in the future due to its large size and TPZ. Tree # 86 is a Very Large Habitat stag located to the south of the proposed lots 205/206 and within mapped new road. This tree will also be considered lost to the development. Both trees have been mapped as scattered Large Trees in the NVR report to be offset. Tree #86 is being considered for retention as a feature and habitat stag but will require a pull test and significant upper limb reduction.

Tree #85 is an indigenous species, located in lot 201, it is of low retention value and poor form having fallen over from root plate failure and growing laterally along the ground. This tree will require offsetting and has been mapped in the NVR report.

Trees proposed for retention (21 trees) With no proposed TPZ incursion

With <10% incursion into TPZ ~proposed/existing

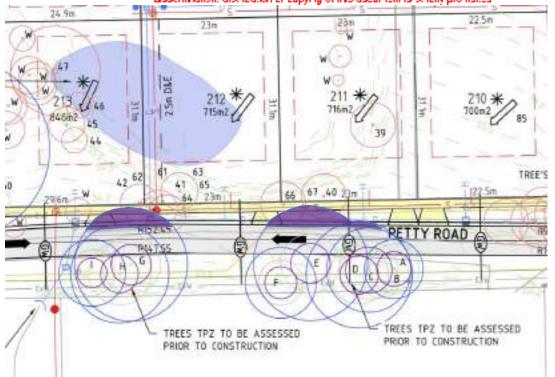
Tree #1 is a Large Old Tree located to the north-west of the site and can be retained with some extensive work in lot 301. This tree has been offset however, due to the consequential loss from the division of the site into smaller lots (<4000m²). New encroachment is calculated as 8.1%.

Trees #10 & 11 are located on the neighbouring property to the west. Lots 304 & 305 building envelopes have been designed to have a less than 10% TPZ incursion for Tree #10 which is deemed acceptable under AS4970 (2009). New encroachment is calculated as 2.6% & 1.2% respectively for Trees 10 & 11.

Trees #48-57 are indigenous trees located to the south-west of the subject property and are proposed for retention as part of the conservation reserve. Of these trees #48, 49, 50, 53, 54, 57 & 56 are Very Large & Large Old Trees with high retention value. These trees have high habitat value, and they can be retained within the proposed conservation reserve. TPZ fencing should be erected for the development

of the adjacent lots 213 & 214. Tree 48, new encroachment has been calculated as 1.2% and Tree 49, new encroachment as 1.2%.

Tree #58 is an indigenous Large Old Tree located on the Petty Rd nature-strip to the south of the site. This tree can be retained no new impact anticipated from works.


Additionally, it is hoped that trees to the south side of Petty Road (not assessed previously as greater than 15m from shown works) can be retained with new encroachment limited from the works. Works include the crossovers, formalised drainage, service installation and footpaths.

A further updated assessment of these trees in June 2025 now numbered A-I on the site plan against updated development plans V. 14, shows that TPZ incursion with no SRZ encroachment from new works to the north side of Petty road is possible for Trees C, D, E, G & H as a result of the development. This assumes that works to surface the road (being the area of existing compaction) will be at or above existing grade and thus remain the same.

All of the trees along the south side of Petty Rd have existing major incursion into their TPZ and SRZs from the existing compacted road surface and drainage swales existing on either side of the road. New encroachment for trees C, D, E, G & H is likely with % encroachments detailed below.

Tree	Existing	Proposed	NEW encroachment	Distance to
ID	encroachment %	encroachment	% estimated from	new works
		%	works to construct	(excluding
			crossovers, set	road surfacing
			formalised drainage	at or above
			infrastructure levels,	grade)
			install services and	
			footpaths=	
			Proposed % minus	
			Existing%	
A	28% TPZ inc. SRZ	28%	0%	NA
В	Dead	Dead	0%	NA
С	31% TPZ inc. SRZ	35%	<10% (4%)	5.9m
D	29% TPZ	37%	<10% (8%)	6.5m
E	41% TPZ inc. SRZ	59%	>10% (18%)	5m
F	5% TPZ	5%	0%	NA
G	40% TPZ inc. SRZ	58%	>10% (18%)	5m
Н	28% TPZ	34%	<10% (6%)	6.5m
I	21% TPZ	21%	0%	NA

Table 2: Tree existing encroachment % is shown in column 2 and then proposed % encroachment in column 3. New works % encroachment in column 4 has been calculated by subtracting existing % from proposed % thus determining the estimated new encroachment % in column 4.

F & L plan detail with NEW encroachment north side road show in purple.

When viewed in 2D on plans, trees with the largest % new encroachment are Trees C, D, E, G & H, with Trees C, D & H likely to be a minor incursion (<10% new) and Trees E & G likely to be a major incursion pending the works detail within the TPZ areas. It is hoped that all these trees can be retained, and root sensitive excavation methods employed, especially within the TPZ areas of Tree E & G, however it must be noted that Tree E is showing signs of decline at present with Bracket Fungi infestation evident from fruiting sporophores limiting the ULE.

It must be noted that due to the regular contracted council excavation works to clean out the swale drain on Petty Rd, it is likely that roots present in this area would have already been disturbed and cut over time, making it more unlikely that works on the subject property development (north side of Petty Rd) would incur TPZ areas any greater than existing conditions for trees C, D & H. For Trees E & G, it will be important to undertake non-invasive root investigation methods and implement root sensitive excavations within the TPZ area via air spade or hydro excavator and to have a project arborist present to implement tree protection strategies in order to ensure that encroachment is kept to a minimum extent as possible.

If it is deemed that these trees are considered lost then an updated NVR report will be provided as conditioned within the planning permit.

Avoid Minimise Offset

Tree removal cannot be avoided on this site. Many indigenous trees will require removal to establish the subdivision with nine trees of high retention value being proposed for removal (#39, 40, 41,42, 45, 47 & 84) with three of these Very Large or Large Old Trees (#47, 84 & 85) trees.

Trees #48-57 are a patch of high retention value trees for habitat provision which will be secured as a sanctuary within the conservation reserve. Of these seven (trees

#48, 49, 50, 53, 54, 57 & 56) are Very Large & Large Old Trees with high retention value.

It is proposed that vegetation remain in situ as long as possible to establish the conservation reserve, install nest boxes and habitat corridors. The staged development of this site does minimise the impact on habitat, and native vegetation proposed for removal or considered consequentially lost has been mapped to calculate the offset in the NVR report submitted with this application. A third-party OTC vegetation credit will be purchased to satisfy this offset once the planning process has progressed.

Tree Protection

To protect trees onsite whilst construction takes place, Tree Root Protection Zones (TPZ) should be fenced off and a thick layer of protective mulch applied to 100mm depth and to be placed to the dripline of trees. Tree protection zones are marked on the site plan. Fencing must comply with the Shire's specifications for TPZ and AS4970-2009. Development zone fencing &/or Conservation reserve fencing will alleviate the need for individual TPZ fences.

Of particular note for protection are Trees #49 & 50 which are Large Old Trees located on the site and nature-strip respectively. These will require specific TPZ fencing protection and must not be damaged during works.

Trees #47, 68 & 84 are Very Large Trees proposed for removal, and if approved should be checked thoroughly for habitat hollow occupancy prior to removal. A qualified wildlife carer should be present at their removal, to administer assistance should any fauna require.

The conservation reserve should be fenced and established prior to any works beginning on the subject site with nest boxes installed to provide additional habitat options. Refer to Ecological Assessment Report for details.

The proposed path through the reserve will be constructed at or above grade and remain a permeable surface. No major encroachment for trees #48-58 is anticipated.

Ecological Management

An ecological management strategy should be developed from the Ecological Assessment Report (Healesville Plants, 2023) once the planning process has progressed to grant a permit and a development construction plan and works timeframe has been established for the road development and subdivision into lots. This will prevent any unwanted damage to indigenous flora and fauna and should also include the timing of works to remove native vegetation and also weed species such as Blackberry thickets which may provide habitat for Southern Brown Bandicoots.

Of course, it is imperative to watch and maintain the health of all remaining trees, during and post works. The integrity of the trees may be altered through this development process and some may thrive, while others may decline, regular monitoring is essential.

References 5.0

Cardinia Shire Council:

https://www.cardinia.vic.gov.au https://cardinia.pozi.com/

DELWP (Department of Environment, Land, Water and Planning) *Naturekit*. http://maps.biodiversity.vic.gov.au/viewer/?viewer=NatureKit

DELWP (Department of Environment, Land, Water and Planning) VicPlan https://mapshare.vic.gov.au/vicplan/

DT&P (Department of Transport and Planning) *Bushfire Protection Exemptions – Clause 52.12* and *Bushfire management Overlay Clause 44.06* https://planning-

schemes.app.planning.vic.gov.au/Victoria%20Planning%20Provisions/ordinance/5
2.12?_ga=2.237337032.913473817.1674020365~293654440.1674020365
and https://planning-schemes.app.planning.vic.gov.au/Victoria%20Planning%20Provisions/ordinance/4

Standards Australia. (2009) AS 4970-2009 Protection of Trees on Development Sites.

Treetec (2014) TPZ/SRZ Calculator. www.treetec.net.au

Appendices 6.0

Native Vegetation Removal Report

NVRR ID: 311_20240815_JGB

This report provides information to support an application to remove, destroy or lop native vegetation in accordance with the *Guidelines for the removal*, destruction or lopping of native vegetation (the Guidelines). This report is **not an assessment by DEECA** of the proposed native vegetation removal. Offset requirements have been calculated using modelled condition scores.

Report details

Date created: 15/08/2024

Local Government Area: CARDINIA SHIRE

Registered Aboriginal Party: Bunurong Coordinates: 145.70861, -38.09227

Address: 8 WATTLETREE ROAD BUNYIP 3815

Regulator Notes

Removal polygons are located:

Summary of native vegetation to be removed

Assessment pathway	Intermediate Assessment Pathway				
Location category	Location 1 The native vegetation extent map indicates that this area is not ty characterised as supporting native vegetation. It does not meet th to be classified as Location Category 2 or 3. The removal of less th hectares of native vegetation in this area will not require a Species				
Total extent including past and proposed removal (ha) Accords endingered EVCs (hat: 0	0.363	Extent of past removal (ha) Extent of proposed removal - Patches (ha) Extent of proposed removal - Scattered Trees (ha)	0.252		
No. Large Trees proposed to be removed	4	No. Large Patch Trees No. Large Scattered Trees	1		
No. Small Scattered Trees	0	- N	I, S		

Offset requirements if approval is granted

Any approval granted will include a condition to secure an offset, before the removal of native vegetation, that meets the following requirements:

General Offset amount ¹	0.152 General Habitat Units
Minimum strategic brodiversity value score ²	0.442
Large Trees	4
Vicinity	Melbourne Water CMA or CARDINIA SHIRE LGA

Mil: values within tables in this document may not add to the totals shown above due to munding

The availability of third-party offset credits can be checked using the Native Vegetation Credit Register (NVCR) Search Tool - https://nvcr.delwp.vic.gov.au

^{1.} The General Offset amount required is the sum of all General Habitat Units in Appendix 1.

^{2.} Minimum strategic biodiversity value score is 80 per cent of the weighted average score across habitat zones where a General Offset is required. required.

Application requirements

Applications to remove, destroy or lop native vegetation must include all the below information. If an appropriate response has not been provided the application is not complete.

Application Requirement 1 - Native vegetation removal information

If the native vegetation removal is mapped correctly, the information presented in this Native Vegetation Removal Report addresses Application Requirement 1.

Application Requirement 2 - Topographical and land information

This statement describes the topographical and land features in the vicinity of the proposed works, including the location and extent of any ridges, hilltops, wetlands and waterways, slopes of more than 20% gradient, low-lying areas, saline discharge areas or areas of erosion.

The 10 acre property is located on Wattletree RD Bunyip backing onto Petty RD it is -65m ASL with a southerly aspect and currently consist of a shed, loosebox, lawn and garden areas having long been cleared for pasture with a windbreak section of planted vegetation, large dam and bushland area. The property slopes gently downwards to the south from Wattletree rd to Petty RD and is in a well-established area with a mix of residential and rural properties adjacent to it. There are large and smaller properties in the immediate surrounds connected by fragmented treed and natural areas which are mostly heavily disturbed. Many of the larger adjacent properties are already or currently being subdivided into smaller residential lots due to the re-zoning by Council. A small amount of naturally established native vegetation requires offsetting for this proposal and a large portion of this land is being proposed to be set aside as a conservation bushland reserve - this area of the site has the largest number of VLOTs and LOTs and the highest quality of vegetation for biodiversity and habitat provision.

Application Requirement 3 - Photographs of the native vegetation to be removed

Application Requirement 3 is not addressed in this Native Vegetation Removal Report. All applications must include recent, timestamped photos of each Patch, Large Patch Tree and Scattered Tree which has been mapped in this report.

Application Requirement 4 - Past removal

If past removal has been considered correctly, the information presented in this Native Vegetation Removal Report addresses Application Requirement 4.

Application Requirement 5 - Avoid and minimise statement

This statement describes what has been done to avoid and minimise impacts on native vegetation and associated biodiversity values.

The removal of self-sown native vegetation cannot be avoided as much of it will be considered lost due to impact from the installation of underground services along Petty Rd being within the SRZs of many of the Nature-strip trees. Some additional trees within this remnant will be lost due to the establishment of building envelopes for the subdivided lots. The block has long, been managed for fuel reduction, used for grazing and for the most part is covered by exotic pasture grasses (many pasture improvement species) and herbaceous weeds. Some trees offset in the NVR are only offset due to their consequential and are actually proposed for retention (#1). Much effort and redesign has resulted in fewer LOTs and VLOTs being removed, and the establishment of a bushland reserve will benefit both local flora and fauna biodiversity.

Application Requirement 6 - Property Vegetation Plan

This requirement only applies if an approved Property Vegetation Plan (PVP) applies to the property Does a PVP apply to the proposal?

No

Application Requirement 7 - Defendable space statement

Where the removal of native vegetation is to create defendable space, this statement:

- . Describes the bushfire threat; and
- Describes how other bushfire risk mitigation measures were considered to reduce the amount of native vegetation proposed for removal (this can also be part of the avoid and minimise statement).

This statement is not required if, if the proposed defendable space is within the Bushfire Management Overlay (BMO), and in accordance with the 'Exemption to create defendable space for a dwelling under Clause 44.06 of local planning schemes' in Clause 52.12-5.

No tree removal for defendable space applies. BAL for future construction on the subdivided lots has been considered and designed appropriately to avoid tree loss.

Application Requirement 8 - Native Vegetation Precinct Plan

This requirement is only applicable if you are removing native vegetation from within an area covered by Native Vegetation Precinct Plan (NVPP), and the proposed removal is not identified as 'to be removed' within the NVPP.

Does an NVPP apply to the proposal?

No

Application Requirement 9 - Offset statement

This statement demonstrates that an offset is available and describes how the required offset will be secured. The Applicant's Guide provides information relating to this requirement.

A first party offset is not an option on this site due to the proximity of neighbouring dwellings. A conservation reserve (1.3Ha) has been proposed as part of this application, however this cannot be used as an offset site due to the proximity to dwellings. A third party OTC vegetation credit will be sourced and secured once the planning process has progressed. Credits are available and the land owners are aware of this cost.

Next steps

Applications to remove, destroy or lop native vegetation must address all the application requirements specified in the Guidelines. If you wish to remove the mapped native vegetation you are required to apply for approval from the responsible authority (e.g. local Council). This Native vegetation removal report must be submitted with your application and meets most of the application requirements. The following requirements need to be addressed, as applicable.

Application Requirement 3 - Photographs of the native vegetation to be removed

Recent, dated photographs of the native vegetation to be removed **must be provided** with the application. All photographs must be clear, show whether the vegetation is a Patch of native vegetation. Patch Tree or Scattered Tree, and identify any Large Trees. If the area of native vegetation to be removed is large, provide photos that are indicative of the native vegetation.

Ensure photographs are attached to the application. If appropriate photographs have not been provided the application is not complete.

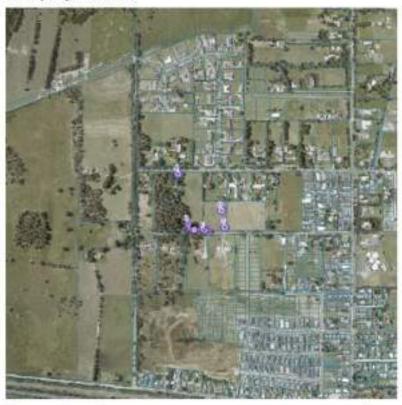
Application Requirement 6 - Property Vegetation Plan

If a PVP is applicable, it must be provided with the application.

Appendix 1: Description of native vegetation to be removed

General Habitat Units for each zone (Patch, Scattered Tree or Patch Tree) are calculated by the following equation in accordance with the Guidelines

General Prohitot Units = extent without overlap a condition score a general landscape factor a 1.5, where the general landscape factor = 0.5 + (strategic bladiversity value score/2)


The General Offset amount required is the sum of all General Hobitat Units per zone.

Native vegetation to be removed

information provided by or on behalf of the applicant			reformation calculated by NVR Map							
Zeen	Туре	ORM (cm)	EVC code (modeled)	Suregional conservation status	Large Transiti	Condition score (modelled)	Polygan sotest (Na)	Extent untheat overlap (he)	SBV score	Second Hebitat Swits
1	Patch	7.3	HWI_DECH	base conorm	- 1	0.582	#.15¢	0.150	0.548	0.104
Α.	Scattered Treat	10	HSF_000H	Laste Concern	(3)	1,280	1,030	0.070	0.524	0.016
н	Scottered Tries	388	HSP_DDER	Level Concern	1	9.299	9.879	0.070	0.550	or date
c	Scattered Time	311	1697_001.6	Least Conserv	3	9.290	3.350	0.676	0.539	0.016

Appendix 2: Images of mapped native vegetation

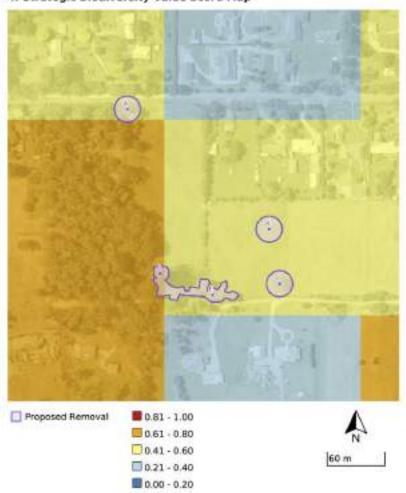
1. Property in context

Proposed Removal

Property Boundaries

200 m

2. Aerial photograph showing mapped native vegetation


Proposed Removal

3. Location Risk Map

4. Strategic Biodiversity Value Score Map

Page 10

5. Condition Score Map

Page 11

6. Endangered EVCs

Not Applicable

© The State of Victoria Department of Energy, Environment and Climate Action 2024

This work is licensed under a Creative Commons Altribution 4.0 International licence. You are free to re-use the work under that licence, on the condition that you credit the State of Victoria as author. The licence does not apply to any images, photographs or branding, including the Victorian Cost of Arms, the Victorian Government logo and the Department of Energy, Environment and Climate Change (DEECA) logo. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

Dischalmer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

and agree that you will only use the document for the purpose specified above and that any assertination, distribution or copying of the document is strictly promoted. Ecological Assessment Report

8 WATTLETREE RD, BUNYIP, 3815

Contents

Introduc 1.0 2.0	tion Site Description Regional and Local Planning Context 2.1 Zoning	2 3 6
3.0	Vegetation and Habitat Assessment	7
4.0	Development Proposal and Impacts	24
Glossary Appendi Appendi	ons	50 51 52 54 63

Introduction

This report has been prepared for Nobelius Land Surveyors on behalf of the owners who wish to subdivide properties within a small area in Bunyip and undertake a staged subdivision of the 3 landholdings i.e. land under three different ownerships (5 addresses refer below table) into 85 residential lots and the subsequent removal of native vegetation.

The proposed developments are located at 8 Wattletree Rd, 22 Wattletree Rd, 9-15 Petty Rd and 24 Nylander Rd in the Cardinia Shire Council area. This proposal is comprised of 5 'lots' (see table below), Zoning is General Residential Zone – Schedule 1 (GRZ1) there are no planning overlays associated with any of these properties.

A pre-application meeting with council was held on the 25^{th} of October 2022 (Council allocation number GE220663). As part of the proposal a ~ 1.3 Ha area of native vegetation, on the western third of the property at 8 Wattletree Rd, has been earmarked to become a nature reserve with a focus on creating and enhancing habitat for the Southern Brown Bandicoot (SBB). It is hoped that the other properties will allow some connecting vegetation (existing/proposed) to the reserve to act as a bio-link for any SBB movement.

Address	Council No.	Lot No.	SPI	Vicroads
8 Wattletree Rd	5000016494	Lot 2 PS708283	2\PS708283	718 E9
22 Wattletree	4908150500	Lot 1 TP423192	1\TP423192	718 E9

9~11 Petty Rd	4686700300	Lot 28 LP5157	28\LP5157	718 F10
13~15 Petty Rd	4686700400	Lot 1 TP431424	1\TP431424	718 F10
24 Nylander Rd	4635400800	Lot 37 LP5888	37\LP5888	718 F10

The DELWP (Department of Environment, Land, Water & Planning) ecological vegetation community (EVC) mapped on the property is: Highland Southern Fall EVC 16 Lowland Forest (Naturekit Biodiversity Mapping). This has been ground truthed.

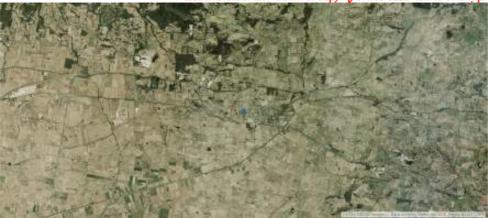
This Ecological Assessment report has been written to address Council's concerns regarding potential impact on the Southern Brown Bandicoot -SBB (*Isoodon obesulus*). It will document the vascular plant species present on the site, and to ascertain whether the vegetation loss will adversely affect potential SBB habitat or the habitat of any rare an threatened species (refer Tables 1 & 2) and how any impact could be avoided or mitigated.

An Arboricultural Report was undertaken by Arbkey Arboriculture and Urban Forest Consultants for 22 Wattletree Rd, 9-11 Petty Rd, 13-15 Petty Rd and 24 Nylander Rd. Healesville Plants has undertaken NVR reports to ascertain the vegetation loss not covered by any exemptions on these sites, as well as the Arboricultural report for 8 Wattletree Rd to assess the remnant vegetation onsite and along the roadsides connecting the properties earmarked for subdivision to ascertain the capacity to link to the western section of 8 Wattletree Road remnant vegetation that will be set aside as a reserve.

RFI from Cardinia Council

4. Vegetation & Ecological assessments:

...


- b. An NVIM assessment under Clause 52.17 for Victorian native vegetation to be removed (where not exempt).
- c. An Ecological Assessment prepared by a suitably qualified person for the subdivision works. The Assessment must address the impacts of any vegetation removal (including weeds, glasses and shrubs) on any habitat corridors (in particular in relation to the Southern Brown Bandicoot).

(Amendment C229 inserted into Schedule 7 of Clause 42.01 – ESO (Ecological Significance Overlay) – not on these properties. As of September 2020, assessment is in progress.)

Site description

1.0

The \sim 22.14-acre properties (that is 10.03 + 0.98 + 5.02 + 1.14 + 4.97 acres for each of the five addresses) are located on Wattletree Rd, Petty Rd and Nylander Rd, Bunyip. The blocks are somewhat rectangular in shape and 8 Wattletree is a 'T' shape, it is relatively flat, with the aspect being north, the altitude is \sim 40m ASL. The proposed reserve site sits amongst other large properties mainly used as pasture or domestic uses, there is fragmented treed areas. The possible habitat linkages include Bunyip Native Sanctuary 54 Doran Rd, Bunyip \sim 2.7km, Bunyip River – east \sim 2.9km, Longwarry – Nar Nar Goon Road Reserve – South \sim 713m and Tea Tree Creek northwest \sim 800m.

Map 1. Aerial image (Source VicPlan, 2018)

Map 1a). Close up aerial image 8 Wattletree Rd (Source VicPlan, 2018)

Map 1b). Close up aerial image 22 Wattletree Rd (Source VicPlan, 2018)

Map 1c). Close up aerial image 9-11 Petty Rd (Source VicPlan, 2018)

Map 1d). Close up aerial image 13-15 Petty Rd (Source VicPlan, 2018)

Map 1e). Close up aerial image 24 Nylander Rd (Source VicPlan, 2018)

Map 1f). Close up aerial image of all 5 lots (Source VicPlan, 2018)

Map 1g). Aerial image of Petty Rd naturestrip (Source Cardinia Pozi Mapping, 2023)


Regional and local planning context

2.0

Note: Full details of the Cardinia Planning Scheme describing all zones and overlays can be accessed on the DELWP website at: https://planning-schemes.app.planning.vic.gov.au/Cardinia/ordinance

2.1 Zoning

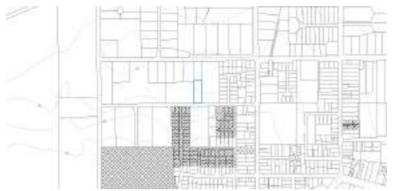
The block is General Residential Zone – Schedule 1 (GRZ1) with no planning overlays.

Map 2. Zoning on property and surrounding areas.

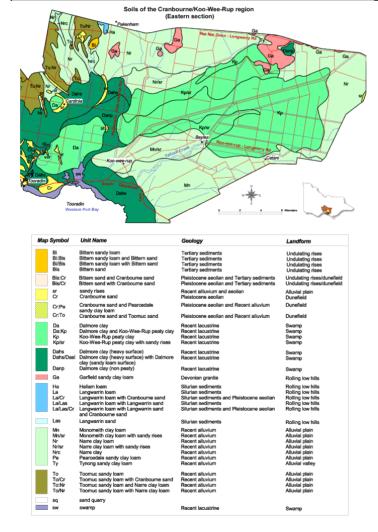
Vegetation and habitat assessment

3.0

3.1 Inspection and methods


The property was surveyed in February 2023 by Healesville Plants. A flora list was compiled of all vascular plants found on the site (refer Appendix A) and all recognised weeds in PPWPCMA then listed separately in Appendix B.

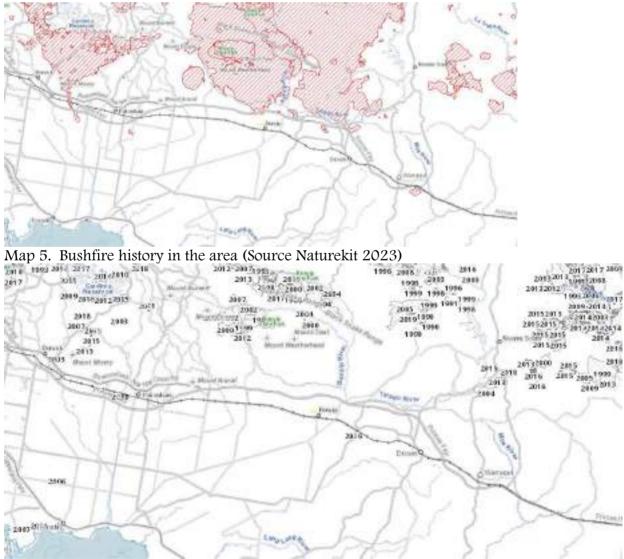
All assessments were made visually, and the accuracy of this assessment is not absolute, given the time available, the whole area could not be covered in fine detail at a soil (regeneration) level. Furthermore, some species may not have been visually obvious at the time of year when the survey was conducted (i.e. indigenous orchid and lily species). Despite these limitations, the overview provided is completely adequate for the proposed development.


The species found were then compared to those found in the literature (as cited in references) and information from EVC lists which allowed the site to be assessed further for its value in the local and regional context.

3.2 Geology and soils

The soil onsite is a sandy clay loan, derived from Devonian Granodiorite. The subsoil is mottled yellow brown to grey in colour and heavy clay subsoil (400-600mm) and medium to heavier clays occur further down the profile from 600-800mm. Soil profile is likely to be quite gritty. Soil area mapped on Map 4. is Garfield Sandy Clay Loam noted a pink.

Map 3. Contours at 1m intervals, property ~40m~70m ASL, VicPlan 2022


Map 4. Soils onsite (Victoria Agriculture, 2023)

3.3 Land use history

These properties have been long cleared in a previously zoned agricultural area of Bunyip, used as apple, pear and stone fruit orchards and grazing purposes. The properties at 8 Wattletree Rd, 24 Nylander Rd and 9~15 Petty RDs have been in the same ownership since at least the early 1980's. The property at 22 Wattletree RD has been in the current ownership since December 2021. The addresses of 22 Wattletree & 24 Nylander currently have dwellings on them, the others are mostly cleared for agricultural sheds and paddocks. There has been some boundary tree planting but no other apparent developments.

The sites are currently grazed by horses and sheep with little pasture improvement or weed management.

There is no fire history onsite, further to the north in the Bunyip State Forest area there has been quite recent bushfire and planned burns. It is of note that no SBB have been sighted in the Bunyip State Forest since 2016 (VNPA 2022).

Map 6. Planned burn history in the area (Source Naturekit 2023)

3.4 General vegetation and habitat condition

There is very little indigenous vegetation remaining on the long-cleared properties and road reserve / nature-strip along Petty Rd that links them to the reserve.

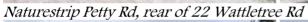
Within the reserve area the number and coverage are below natural state expectations, with 5~30% indigenous, ~57% high threat weeds species and 13% garden species: ~9% soil crust exists. There were 77 species identified onsite, with 22 of these species indigenous to the Lowland Forest / Zone 4 Heathy Woodland Complex Ecological Vegetation Classes (EVC's), 10 garden species and 44 weed species. Many of the indigenous species were single specimens with very little coverage. There were many logs and upright stags, hollowed areas within vegetation, including Blackberries that could serve as SBB habitat.

The area around the existing dam would be ideal to remain as part of the reserve but is currently earmarked for eventual removal (prior to being used as a retarding basin) to facilitate the entry point of connecting roads as detailed per existing easement which would also fragment this dam area from the proposed reserve. The area is frequented by rabbits, foxes, deer and possibly feral cats and domestic dogs. There are vast areas of Blackberry infestation and monocultures of Sweet Pittosporum.

Logs, some cut but still useful habitat elements.

Looking into reserve area to west, thickets of Sweet Pittosporum

Facing South, southwest, into reserve area west.


Reserve area, eastern corner.

Reserve area, western corner.

Beneath Sweet Pittosporum – nothing else growing

Naturestrip Petty Rd, rear of 24 Nylander Rd

Naturestrip Petty Rd, rear of 24 Nylander Rd towards 'reserve'

3.5 Flora and Ecological Vegetation Classes

These properties fall within the Highland Southern Fall Bioregion EVC 16 Lowland Fall that is considered Least Concern conservation status.

Neighbourhood EVCs

EVC 17: Riparian Scrub/Swampy Riparian Woodland Complex

Bioregion: Highlands ~ Southern Fall EVC 18: Riparian Forest (Vulnerable)

Bioregion: Gippsland Plain

EVC 23: Herb~rich Foothill Forest (Least Concern)

Bioregion: Highlands - Southern Fall EVC 53: Swamp Scrub (Endangered)

Bioregion: Gippsland Plain

EVC 83: Swampy Riparian Woodland (Endangered)

Bioregion: Gippsland Plain

EVC 159: Clay Heathland/Wet Heathland/Riparian Scrub Mosaic

Bioregion: Gippsland Plain

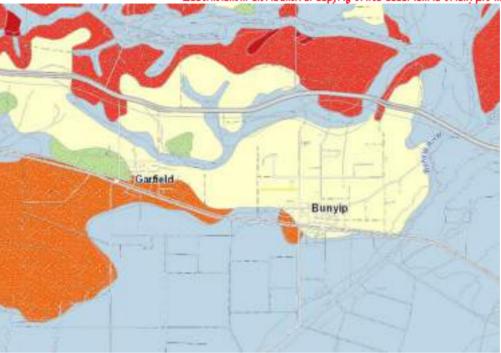
EVC 175: Grassy Woodland (Depleted)
Bioregion: Highlands ~ Southern Fall
EVC 793: Damp Heathy Woodland
Bioregion: Highlands ~ Southern Fall
EVC 937: Swampy Woodland (Endangered)

Bioregion: Gippsland Plain

There were 76 species noted onsite, 22 were indigenous, 10 garden plants and 44 weed species. These numbers may differ slightly if surveys were taken at different times of the year; however, it is deemed that differences would be minimal. The main 'weed' issues are

predominantly the Pasture grasses, Spear Thistle, Blackberry, Mediterranean Broom and Sweet Pittosporum, in general the site is in a 'disturbed' condition.

Blackberry (*Rubus fruticosus*) is listed as a WONS Weeds of National Significance. Listed as **noxious** under the **Catchment and Land Protection Act 1994**, this means it is Regionally Controlled and there exists a legal obligation to control these weeds on their property and the surrounding road reserves area: Spear Thistle (*Cirsium vulgare*). The best method of control for such weeds is chemical, via the use of herbicide such as Glyphosate during the months of September to May; an additional accelerant such as 'Brush Off' or 'Basta' may be included for added strength for more resistant weed species. Any chemicals stronger than 'Glyphosate' must be applied by a professional, with an ACUP (Agricultural Chemical Users Permit) using appropriate equipment and observing correct safety precautions.


Map 7. EVC distribution map onsite in 1750 (Naturekit) LF = Lowland Forest

EVC 16 Lowland Forest

Description

Eucalypt forest to 25 m tall on relatively fertile, moderately well-drained soils in areas of relatively high rainfall. Characterised by the diversity of life forms and species in the understorey including a range of shrubs, grasses and herbs.

DSE 2004

Map 7a. EVC distribution map in 1750 (Naturekit)

EVC 16: Lowland Forest

EVC 17: Riparian Scrub/Swampy Riparian Woodland Complex

EVC 18: Riparian Forest

EVC 23: Herb-rich Foothill Forest

EVC 53: Swamp Scrub

EVC 83: Swampy Riparian Woodland

EVC 159: Clay Heathland/Wet Heathland/Riparian Scrub Mosaic

EVC 175: Grassy Woodland

EVC 793: Damp Heathy Woodland

EVC 937: Swampy Woodland

3.6 Conservation significance of vegetation

A desktop search of potential threatened flora and fauna was undertaken, and the following tables indicate species that have been noted in the past within a 10km (to capture Bunyip State Park) radius of this property.

Scientific Name	Common Name	Last	FFG	DELWP	EBPC Act listing
Birds	Name	Record		listing	
	Curr	0010	T., 1	371	
Accipiter	Grey Goshawk	2018	End	Vul	
novaehollandiae	GOSHAWK				CrEnd
Anthochaera phrygia	0 (8 (0000		37.1	Crena
Ardea alba	Great Egret	2000	1	Vul	
Ardea alba modesta	Eastern Great Egret	2019	Vul	Vul	
Ardea intermedia	Plumed	1994	CrEnd	End	
plumifera	Egret				
Aythya australis	Hardhead	2019	Vul	Vul	
Biziura lobata	Musk Duck	1991	Vul	Vul	
Botaurus poiciloptilus	Australasian Bittern	1978	CrEnd	End	End
Calidris ferruginea	Curlew Sandpiper				CrEnd
Callocephalon	Gang-Gang	2005			End
fimbriatum	Cockatoo				
Ceyx azureus	Azure Kingfisher	2001		NThr	
Charadrius	Greater Sand				Vul
leschenaultii	Plover				
Cinclosoma punctatum	Spotted Quail-thrush	1993		NThr	
Dupetor flavicollis	Black Bittern	2008	End	Vul	
Falco hypoleucos	Grey Falcon				Vul
Gallinago hardwickii	Latham's Snipe	2019		NThr	
Grantiella picta	Painted Honeyeater				Vul
Hieraaetus morphnoides	Little Eagle	2000	Vul	Vul	
Hirundapus caudacutus	White- throated Needletail	2001	Vul	Vul	Vul
Lathamus discolor	Swift Parrot				CrEnd
Lewinia pectoralis	Lewin's Rail	2012	Vul	Vul	
Lichenostomus	Helmeted	2004	CrEnd	CrEnd	CrEnd
melanops cassidix	Honeyeater	2004	CILIIU	CILIIU	CILIIU
Ninox connivens	Barking Owl	1988	CrEnd	End	
	Powerful Owl	2018	Vul	Vul	
Ninox strenua Numenius	Eastern Eastern	2010	v uı	VUI	CrEnd
madagascariensis	Curlew				CIEIIG
Nycticorax	Nankeen	1992		NThr	
caledonicus		1334		MIIII	
careuomicus	Night~Heron				

Scientific Name	Common	Last	FFG	DELWP	EBPC Act listing
Scientific Name			110		LDI C Act listing
	Name	Record	37 1	listing	
Oxyura australis	Blue-billed Duck	1981	Vul	End	
v	Pied	2019		NThr	
Phalacrocorax varius		2019		NIII	
	Cormorant	0202		A VIDI	
Pl-(-1	Royal	2020		NThr	
Platalea regia	Spoonbill	1077		N VIIII	
Plegadis falcinellus	Glossy Ibis	1977		NThr	4
Pycnoptilus floccosus	Pilotbird				Vul
Rostratula australis	Australian				End
	Painted				
	Snipe				
	Australasian	1990	Vul	Vul	
Spatula rhynchotis	Shoveler				
Tyto novaehollandiae	Masked Owl	1993	CrEnd	End	
Tyto tenebricosa	Sooty Owl	2017	End	Vul	
Amphibians	seety e W	2011			
Engaeus sternalis	Warragul	2020	CrEnd		
Litgacus sicilians	Burrowing	2020	CILIIG		
	Crayfish				
T	, ,	1000	O. F. 1		
Engaeus urostrictus	Dandenong	1962	CrEnd		
	Burrowing				
	Crayfish				
Galaxiella pusilla	Dwarf	2012	End	End	Vul
	Galaxias				
Litoria raniformis	Growling	2020	Vul	End	Vul
	Grass Frog				
Nannoperca obscura	Yarra Pygmy				Vul
•	Perch				
Prototroctes maraena	Australian	1998	End	Vul	Vul
	Grayling				' ' '
Pseudophryne	Southern	1993	End	Vul	
semimarmorata	Toadlet	1000	21101	V 011	
	White-footed	1990	Vul	NThr	
Sminthopsis leucopus	Dunnart	1000			
Mammals/Marsupials					
Antecheinus minimus	Swamp				Vul
	Antechinus				' ''-
Dasyurus masculatus	Spot-tailed				End
,	Quoll				
Gymnobelideus	Leadbeater's	1915	CrEnd	End	CrEnd
<i>leadbeateri</i>	Possum				
Isoodon obesulus	Southern	2018	End	NThr	End
obesulus	Brown				
	Bandicoot	<u></u>			
Mastacomys fuscus	Broad~	1993	Vul	End	Vul
mordicus	toothed Rat				
Ornithorhynchus	Platypus	2003	Vul	Vul	
anatinus					

Scientific Name	Common	Last	FFG	DELWP	EBPC Act listing
	Name	Record		listing	
Petauroides volans	Southern	2019	Vul	Vul	End
	Greater				
	Glider				
Petaurus australis	Yellow~				Vul
	bellied Glider				
Phascogale tapoatafa	Brush-tailed	1960	Vul	Vul	
	Phascogale				
Potorous tridactylus	Long-nosed				Vul
trisulcatus	Potoroo				
Pseudomys fumeus	Smoky				End
	Mouse				
Pteropus	Grey~				Vul
poliocephalus	headed				
-	Flying Fox				
Reptiles					
Varanus varius	Lace Monitor	2021	End	End	
Invertebrates					
Synemon plana	Golden Sun				Vul
	Moth				
Megascolides australis	Giant				Vul
	Gippsland				
	Eartworm				

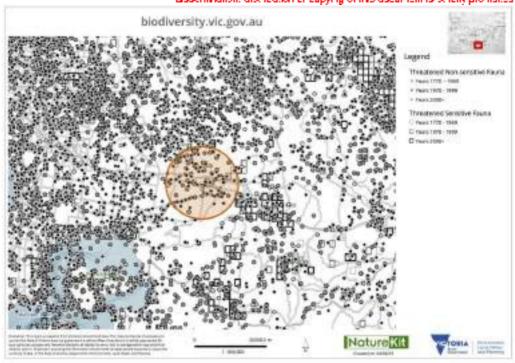
Table 1a. Threatened Fauna Source (Naturekit ~ Victorian Biodiversity Atlas data 2023 & EPBC Act Protected Matters Report, 2023).

Legend:

FFG = Flora and Fauna Guarantee Act

DELWP - Department of Environment, Land, Water & Planning

EPBC = Environment Protection and Biodiversity Conservation Act 1999


Vul = Vulnerable

End = Endangered

CrEnd = Critically Endangered

PK = Poorly Known

NThr = Near Threatened

Map 8. Threatened Fauna within 10km radius of property. (*Source (Naturekit ~ Victorian Biodiversity Atlas data 2023)*

Botanical Name	Common Name	Last Record	FFG listed	DELWP listing	EBPC Act listing
Trees					
Eucalyptus fulgens	Green Scentbark	2015	End	Rare	
Eucalyptus strzeleckii	Strzelecki Gum	2019	CrEnd	Vul	Vul
Eucalyptus yarraensis	Yarra Gum	1853	CrEnd	Rare	
Shrubs					
Acacia leprosa var. uninervia	Large-leaf Cinnamon Wattle	2005	End	Rare	
Correa reflexa var. Iobata	Powelltown Correa	2009	End	Rare	
Olearia asterotricha	Rough Daisy-bush	1770	End	Rare	
Pomaderris vaciniifolia	Round-leaf Pomaderris				CrEnd
Pultenaea juniperina s.s.	Prickly Beauty	1932	Vul	Rare	
Pultenaea weindorferi	Swamp Bush-pea	1990	End	Rare	
Scramblers/Climbers					

Botanical Name	Common Name	Last Record	FFG listed	DELWP listing	EBPC Act listing
Billardiera scandens	Velvet	1917	End	Rare	
S.S.	Apple-berry				
Herbs					
Bossiaea riparia	River	1986	End	Rare	
	Leafless				
	Bossiaea				
Burnettia cuneata	Lizard	1770	End	Rare	
	Orchid				
Caladenia	Christmas	1986	CrEnd		
flavovirens	Spider-				
	orchid				
Caladenia orientalis	Eastern				End
	Spider~				
	orchid				
Caladenia tessellata	Thick-lipped				Vul
	Spider~				
	orchid	1001			
Corybas	Spurred	1934	End	Rare	
aconitiflorus	Helmet~				
D 1' '	orchid	0005		DIZ	
Desmodium varians	Slender Tick~	2005		PK	
01 ' 1 (1	trefoil				37. 1
Glycine latrobeana	Clover				Vul
I ami direme analo amandi	Glycine				171
Lepidium aschersonii					Vul
Duagaralavillerna	Pepper~cress Silurian	1968		Fro d	
Prasophyllum pyriforme s.s.	Leek-orchid	1968		End	
Prasophyllum	Dense Leek-				Vul
spicatum	orchid				Vui
Pterostylis	Green~	2007	End	Vul	Vul
chlorogramma	striped	2001	LIIG	Vui	Vui
Cinologianina	Greenhood				
Pterostylis cucullata	Leafy				Vul
1 iciosiyiis cucumata	Greenhood				Vai
Senecio psilocarpus	Swamp				Vul
concert poneous put	Fireweed				, 411
Thelymitra longiloba	Marsh Sun~	1941	CrEnd	End	
	orchid				
Thesium australe	Austral				Vul
	Toadflax				
Xanthosia tasmanica	Southern	1984	End	Rare	
	Xanthosia				
Xerochrysum	Swamp				Vul
palustre	Everlasting				
Ferns					

Botanical Name	Common	Last	FFG listed	DELWP	EBPC Act listing
	Name	Record		listing	227 6 7 107 1107 110
Abrodictyum	Jungle	1977	End	Rare	
caudatum	Bristle-fern				
Lastreopsis hispida	Bristly	1934	End	Rare	
	Shield-fern				
Tmesipteris parva	Small Fork~	1995	End	Rare	
	fern				
Graminoids					
Amphibromus	River Swamp				Vul
fluitans	Wallaby~				
	grass				
Astelia australiana	Tall Astelia				Vul
Dianella amoena	Matted Flax~				End
	lily				
Dianella sp. aff.	Arching	2009	Thr	Vul	
longifolia	Flax-lily				
(Benambra)					
Lepidosperma	Hoary	1992	End	Rare	
canescens	Rapier-sedge				

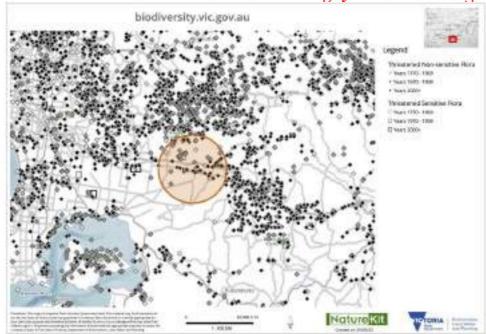
Table 1b. Threatened Flora. Source (Naturekit - Victorian Biodiversity Atlas data 2023 & EPBC Act Protected Matters Report, 2023).

Legend:

FFG = Flora and Fauna Guarantee Act

DELWP - Department of Environment, Land, Water & Planning

EPBC = Environment Protection and Biodiversity Conservation Act 1999


Vul = Vulnerable

End = Endangered

CrEnd = Critically Endangered

PK = Poorly Known

NThr = Near Threatened

Map 9. Threatened Flora within 10km radius of property. (Source (Naturekit ~ Victorian Biodiversity Atlas data 2022)

Threatened Fauna

After reviewing the list of threatened fauna in Table 1a, the habitat provision onsite, and the development proposal, species (if present) which are most likely to be affected by works are:

Swamp Antechinus, Broad-toothed Rat, Southern Brown Bandicoot & Brush-tailed Phascogale – possible habitat in Blackberry thickets, roadside understorey, abandoned rabbit warrens and hollow logs.

Threatened Flora

After reviewing the list of threatened flora in Table 1b, the species onsite, and the development proposal, species (if present) which are most likely to be affected by works are:

Green Scentbark (*Eucalyptus fulgens*) which is present on the properties and the road reserve, some of which may require removal for the establishment of crossovers and access to the new sub-divided lots and has therefore been offset (refer NVR report). Many of these trees are in poor condition, but the Saw sedge understorey and logs have created a thicket together with weed species and do offer some habitat options which may be inhabited by Marsupial species. It is possible that these trees may be able to be retained as a patch, as their TPZs are rather small and should not affect or restrict any development on the new 'lots' and these trees and the understorey should be retained for as long as possible until the reserve area has been established with alternative habitat provision

Development proposal and impacts

4.0

The development at 8 Wattletree RD Bunyip consists of a subdivision of $\sim 2/3$'s of the property into 31 lots; the property at 22 Wattletree Rd into 4 lots; 9-11 Petty Rd into 23 lots; 13-15 Petty Rd into 3 lots; and 24 Nylander Rd into 24 lots, all with road and other infrastructure as required.

These properties will, for the most part lose their tree layer, however the ground story consists of exotic pasture grasses and herbaceous species (mostly exotic) and some woody weeds. The are some large shrub remnants and tree patches along some of Petty Road that could act as a habitat corridor, these have been offset as part of the NVR reports, however, ideally would be retained where possible between individual 'lot' crossovers (with specialised habitat pipework conduits installed for faunal traffic) pending subdivision approval.

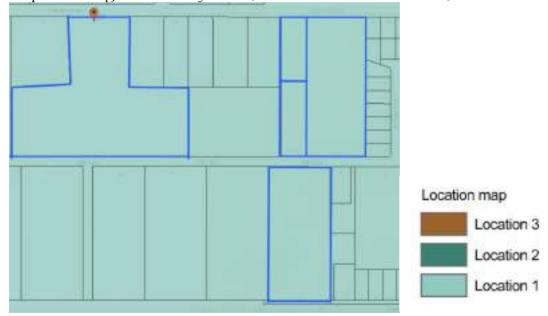
The road reserves need to be enhanced where possible to lead to the Conservation area noted as Public Open Space reserve on 8 Wattletree Rd as a bio-link area (refer Map 10 below).

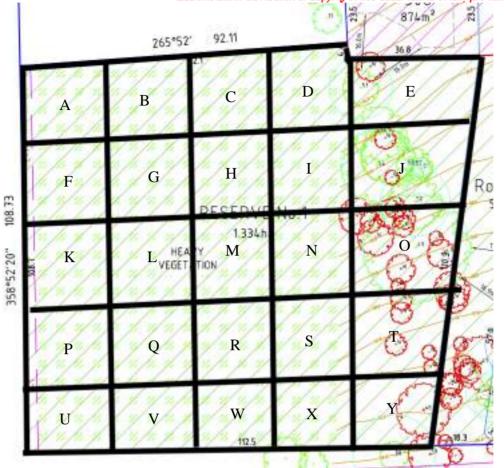
The loss of vegetation will be offset by the individual landholders via an offsite offset and has been calculated in three NVR reports for each of the three landholdings.

Map 10. Existing site plan showing location of Public Open Space Reserve (Nobelius, 2023)

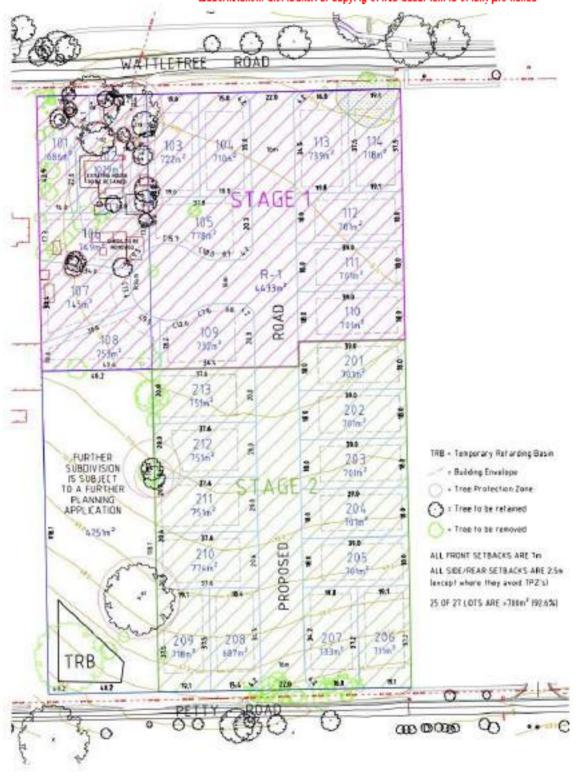

There is always a conflict between development and conservation of vegetation. However, on this particular property the allocation of a bushland conservation reserve as a 'good faith' gesture due to the subdivision of the greater property and landholding is an excellent

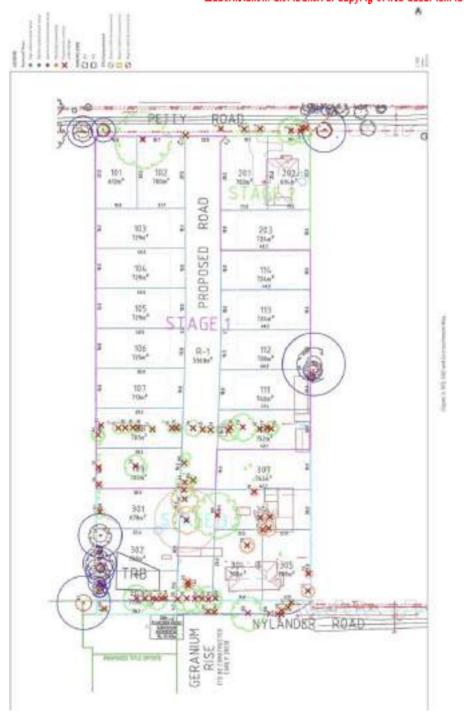
outcome with indigenous vegetation impacts minimised where possible and potential habitat provision conserved and protected.


The implemented weed control and environmental weed removal measures will result in environmental gains by managing the land, and preventing the weed spread further afield to other properties in the area. The current management of the property as a whole is grazing of pasture grasses and firewood collection from the 'reserve' area. It appears that although the reserve area is fenced off stock have been allowed at times to graze the ground flora, by eliminating this and spraying exotic species as they appear, together with the removal of the woody environmental weed species with fleshy fruit such Sweet Pittosporums, it is anticipated that the window of opportunity for indigenous species will be opened, both via regeneration from the soil seed bank and revegetation efforts.


Map 11. Native vegetation condition score (Source DELWP – NVIM 2023)

Map 12. Strategic biodiversity score (Source DELWP – NVIM 2023)


Map 13. Location Map (Source DELWP – NVIM 2023


Map 14. Proposed reserve of 8 Wattletree Rd, with approximate management grid sections.

Map 15. Proposed site plan subdivision (Nobelius 2023)

Map 16. Proposed subdivision of 22 Wattletree Rd, 9-11 and 13-15 Petty Rd.

Map 17. Proposed subdivision of 24 Nylander Rd.

4.2 Managing the Reserve for Southern Brown Bandicoots & other threatened fauna

Background

Land clearing for agriculture, housing and roads, alterations to hydrology, the introduction of predators – feral and domestic animals, and the fragmentation of habitat corridors has seen the dramatic decline of Southern Brown Bandicoot numbers in the wild. Figures indicate a reduction in their range of 50-90% since European settlement due to the highly fragmented landscape.

The loss of successful population viability into the future relies on genetic diversity to increase the ability to adapt to changes in the environment. By creating isolated habitat areas, i.e. not linked to other core areas reduces the chances of viable populations surviving into the future. The challenge is to keep populations safe, disallowing predators but allowing SBB movement.

Citizen Science group within VNPA (Victorian National Parks Association) noted that SBB had not been seen since 2016 in the Bunyip State Park some ~8.3km north of this site. There were significant bushfires in 2019 that would have further negatively impacted any possible SBB populations.

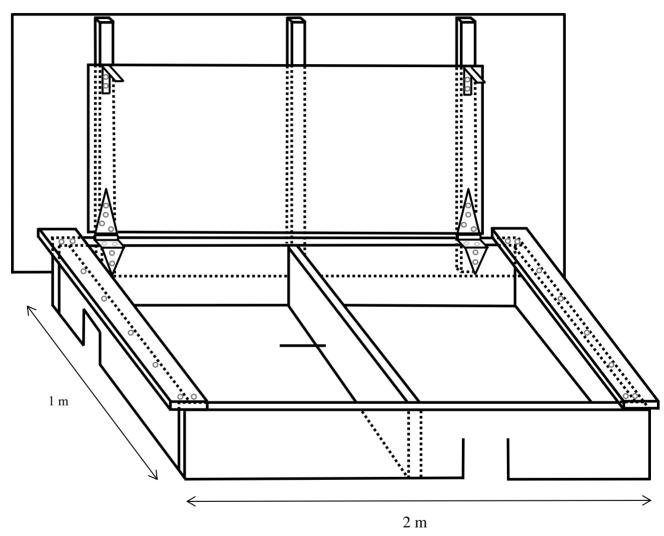
Competition and pest animals

Rabbits degrade habitat – the creation of their warrens causes soil erosion & disturbance, even destroying SBB habitat. Rabbits also attract foxes that also prey on SBB's. Restrict dog & cat access. Cats can transmit Toxoplasmosis that can also be detrimental to SBB's.

Tracking & monitoring for presence (SBB)

Surveys & monitoring – signs - digging, scats, spotlighting, hair tubing, predator scats, surveillance cameras, cape trapping. Connect with local environment groups, such as Bunyip Landcare Group, Cardinia Environment Coalition & CEC nursery and Friends of Bunyip State Park, along with VNPA.

Southern Brown Bandicoot


Reserve will need to be managed specifically tailored to support to specific needs of the SBB, this will also encourage other native species to inhabit. Ground dwelling solitary nocturnal marsupial, their breeding regime depends on the conditions, i.e. food availability and climate. They can produce between 1-4 offspring in a litter up to 3 times per year. They reach sexual maturity at ~60 days and live between 3-4 years. Populations expected to occur in very low densities ~ 0.5-5ha (20-200 individuals per km²). They dig in leaf litter and soil for insects, fungi, plant root nodules and bulbs, as well as enjoying fruit seed and other plant materials. They nest under plants or use other species' burrows, in dense vegetation, wetland fringes and heathland vegetation types within native and exotic shrubs, including Blackberry. Therefore, a staged vegetation management regime is required to not remove all the weedy species at once, but leaving areas that could provide desirable conditions.

Vegetation Management for optimal SBB habitat

The allocated reserve area has monocultured areas of Blackberry and Sweet Pittosporum, the removal of these should be managed carefully to not expose vast areas all at once. Revegetation of indigenous species that will provide similar conditions should be installed in more open areas before weed removal. The Bushland Reserve area can be theoretically divided into $\sim 20\text{m}^2$ patches to be targeted in a staged manner. (see Map 14).

Road reserves, mainly along Petty Rd, to link the other proposed subdivided estates to this reserve will require revegetation with shrub, preferably prickly species, and ground flora to create a habitat link. New crossovers should have pipes installed as conduits for safe SBB movement along the Petty Rd verge to the conservation public open space reserve. Whilst staged weed removal and indigenous vegetation removal is undertaken artificial shelters could be installed – see diagram below.

Southern Brown Bandicoot Artificial shelter (hide) – plan with dimensions.

Cardinia Shire Council plans.

4.3 Land Management Plan Table 2:

Land-use Commitment

- * Commit to protecting the land for habitat provision, to enhance and maintain biodiversity.
- * Retain all standing large trees (dead or alive) Indigenous species
- * Install arboreal & terrestrial nest boxes prior to permitted tree removal.
- * Retain all other standing trees (dead or alive) Indigenous species
- * Ensure all hollow bearing trees are protected.
- * Allow natural indigenous species regeneration.
- * Control rabbits, foxes, deer and other pest herbivores (if any)
- * Manage domestic pets (cats and dogs) and agricultural animals within this zone.
- * Ensure that all weeds and any other threats that may impact on native flora/fauna are controlled.
- * Ensure no vehicles enter zone, unless absolutely necessary for restoration works, and ensure only existing accessway is used with no additional permanent tracks.
- * Maintain existing tracks for vegetation management, no unnecessary new tracks to be created.
- * Retain all fallen leaf litter, twigs, branches and logs within the zone, unless for firewood purposes.
- * Ensure no planting of non-indigenous flora exists.
- * Ensure no soil or indigenous vegetation disturbance or stockpiling occurs in this zone.
- * Ensure that no storage or accumulation of rubbish or materials occurs.
- * Ensure habitat fencing is installed between the reserve and the subdivision correctly and maintained and perimeter fencing maintained or replaced where necessary if applicable.

Management Commitment					
Years from Commencement	Management actions to be completed	Timing of activity (if applicable)			
One to Three	 Maintain existing perimeter fencing. Install habitat fencing between this reserve and residential subdivision area Liaise with local Landcare groups and VNPA citizen Science groups for ongoing SBB monitoring for presence and general environmental collaboration. Install nest boxes and terrestrial boxes for alternative habitat provision for Southern Brown Bandicoot, Swamp Antechinus, Broad-toothed Rat & Brush-tailed Phascogale and any other arboreal marsupials such as gliders, possums and micro-bats. Check all trees for habitat hollows and occupancy prior to removal. Have Licensed Wildlife carer onsite during permitted tree removal works for hollow bearing trees. Undertake selective removal of weed species, ensuring weed cover does not increase beyond the current level: implement grassy and herbaceous weed control using spot-spraying, burning, hand-weeding (in sensitive areas if applicable); control weeds prior to seed maturation/seed set; control woody weed species such as using hand pulling, cutting & painting and drill & fill. Undertake Sweet Pittosporum & Blackberry control in ~10m² patches at a time while revegetation grows to develop habitat niches. Be aware of any new weed species appearing, see Appendices for expected species. 	* All Year * Spring – Summer – Autumn			

	 Allow natural recruitment of indigenous species Monitor pest animals across the zone and implement 	
	 pest animal management works if necessary. Retain all standing trees, dead or alive, especially protecting hollow bearing trees. 	
	Remove any rubbish or other materials that are present within zone. Transport Tr	
	 Ensure vehicular access is kept to a minimum, especially once initial weed control and revegetation has taken place. 	
	 Work through grid area for weed removal ensuring Blackberry thicket cover is not reduced too quickly thus preventing SBB habitat provision. Refer Table 4. 	
Four to Ten	Continue to ensure no unnecessary vehicles or other land disturbances activity permitted, and no storage or accumulation of rubbish or materials occurs.	* All Year
	Monitor condition of fences, repair/replace where necessary	
	 Continue to retain all standing trees, dead or alive, especially protecting hollow bearing trees. 	
	 Continue to monitor pest animals across the zone and implement pest animal management works if necessary. 	
	 Maintain revegetation areas and replace any dead plants with the same or approved species. 	
	Work through grid area for weed removal ensuring Blackberry thicket cover is not reduced too quickly thus preventing SBB habitat provision.	* Spring – Summer –
	Continue to control weed species: * control woody weed species such as using hand pulling, cutting & painting and drill & fill. * Be aware of any new weed species appearing, see Appendices for expected species.	Autumn
Ongoing	Continue to control weed species: as they appear: * implement grassy and herbaceous weed control using spot-spraying, burning, hand-weeding (in sensitive areas if applicable); control weeds prior to seed maturation/seed set; * control woody weed species such as using hand pulling, cutting & painting and drill & fill.	* Spring – Summer – Autumn
	 Maintain revegetation areas and replace any dead plants with the same or approved species. 	* All Year
	 Continue to monitor pest animals across the zone and implement pest animal management works if necessary. 	All Ical
	 Work through grid area for weed removal ensuring Blackberry thicket cover is not reduced too quickly thus preventing SBB habitat provision Refer Table 4. 	
	 Continue to ensure no unnecessary vehicles or other land disturbance activities permitted, and no storage or accumulation of rubbish or materials occurs. 	
	 Monitor fencing for repair/replacement. * Be aware of any new weed species appearing, see Appendices 	
	for expected species.	

Table 3. Land Management Plan Action works

Action	Location	Method	Herbicide/Chemical Use	Timing	Priority
Obtain required planning permits & endorsed plans	8 Wattletree Rd, Bunyip	Apply to Council	NA	As endorsed	High
Remove approved trees for DS (see Arb reports)	Paddock areas – to be subdivided	Install arboreal and terrestrial nest boxes. Employ a qualified Arborist. Have Wildlife carer present and check all hollows for occupancy.	NA	Once permits approved	High
Eradicate woody weeds - especially berry fruiting species	Across the site, in small sections at a time using grid area – Table 4.	* Cut & paint larger plants * Hand pull young plants	Glyphosate based product or employ a contractor with an ACUP	Spr-Aut	High
Development & construction	Construction zone	NA	NA	Once permits approved	High
Fence off construction zone to reserve, protect trees with TPZ fencing esp. #1 & 58.	Construction zone	Fencing must comply with the Council's specifications for TPZ and AS4970-2009, care taken whilst removing trees for DS	NA	Once permits approved	High
Control herbaceous & grassy weeds	Entire property	Spray or hand pull	Glyphosate based herbicide, as per product instructions	All year	Medium
Rabbits	Any active warrens to be located & mapped	* Baiting/ ferreting of rabbit warrens after approved risk assessment has been	NA Ferrets are preferred option as Pindone is poisonous to SBB.	Late Summer All Year	High
		undertaken. * Maintain warrens as potential Bandicoot habitat. * Neighbourhood		Late Summer All Year	

Action	Location	Method	Herbicide/Chemical Use	Timing	Priority
		baiting program * Monitor for return of rabbits or presence of Bandicoots			
Retention of large logs	Public Open Space conservation reserve Zone	Leave in-situ unless crossing an accessway	NA	All Year	Medium
Maintain existing tracks for maintenance	Public Open Space conservation reserve Zone	Keep tracks clear of debris and weeds for management purposes	Weeds – Glyphosate based product	All Year	Medium

Table 4. Action & timing of works process plan

Revegetation staged in area sections and species used, see Revegetation Table 5. Sections to be managed in a staged approach:

Timing ~ year	Section	Weed control	Revegetation
0~1	A, E, U, O & Y	✓	\checkmark
1~2	B, D, F, J, P, T, V, X	✓	\checkmark
2~3	C, G, I, K, N, Q, S,W	✓	\checkmark
3~4	H, L, M, N, R	✓	✓
4~5	A, E, U & Y	✓	✓
5~6	B, D, F, J, P, T, V, X	✓	✓
6~7	C, G, I, K, N, Q, S,W	✓	√
7~8	H, L, M, N, R	✓	✓
8~9	All sections	✓	✓
9~10	All sections	✓	✓

Table 4. Grid Revegetation/weed control timing

4.4 Indigenous species

A suggested revegetation and in ~fill plant list is below, the tree species will provide a younger generation to come though, as there are quite a few dead stags, also good habitat but will eventually fall to become log habitat. The stages look to establish some overstorey species not currently on-site and prickly bushes, ground covers and grasses to create habitat niches for the SBB as weed control begins. Then increasing diversity to provide great food opportunities and habitat options. Stage 3 sees more diversity and allows for any gaps that have developed to be in-filled. Table 5.

Botanical Name	Common Name	Stage 1	Stage 2	Stage 3
Trees				
Acacia dealbata	Silver Wattle			
Acacia mearnsii	Black Wattle			
Acacia melanoxylon	Blackwood			

Botanical Name	Common Name	Stage 1	Stage 2	Stage 3
Allocasuarina littoralis	Black Sheoak			
Eucalyptus baxteri	Brown Stringybark			
Eucalyptus cephalocarpa	Silver-leaf Stringybark			
Eucalyptus dives	Broad-leaf Peppermint			
*Eucalyptus fulgens	Green Scentbark			
*Eucalyptus globoidea	White Stringybark			
Eucalyptus macrorhyncha	Red Stringybark			
*Eucalyptus obliqua	Messmate Stringybark			
*Eucalyptus radiata	Narrow-leaf Peppermint			
Eucalyptus sieberi	Silvertop Ash			
*Eucalyptus viminalis				
subsp. pryoriana	Coast Manna-gum			
Shrubs	4 4			
Acacia brownii	Heath Wattle			
Acacia genistifolia	Spreading Wattle			
Acacia paradoxa	Hedge Wattle			
Banksia marginata	Silver Banksia			
Banksia spinulosa var. cunninghamii	Hairpin Banksia			
Bauera rubioides	Wiry Bauera			
*Bursaria spinosa	Sweet Bursaria			
Cassinia aculeata	Common Cassinia			
Cassinia longifolia	Shiny Cassinia			
Coprosma hirtella	Rough Coprosma			
Coprosma quadrifida	Prickly Currant-bush			
Correa reflexa	Common Correa			
Daviesia latifolia	Hop Bitter~pea			
Daviesia leptophylla	Narrow-leaf Bitter-pea			
Dillwynia cinerascens s.l.	Grey Parrot~pea			
Epacris impressa	Common Heath			
Hakea decurrens	Bushy Needlewood			
Hakea nodosa	Yellow Hakea			
Hakea ulicina	Furze Hakea			
Indigofera australis subsp.	A (17 1'			
australis Leptospermum	Austral Indigo			
continentale	Prickly Tea~tree			
Leptospermum lanigerum	Woolly Tea-tree			
Leucopogon virgatus	Common Beard-heath			
Lomatia ilicifolia	Holly Lomatia			
Olearia lirata	Snowy Daisy-bush			

Botanical Name	Common Name	Stage 1	Stage 2	Stage 3
Olearia phlogopappa	Dusty Daisy-bush			
Ozothamnus ferrugineus	Tree Everlasting			
Pimelea humilis	Common Rice-flower			
Pimelea linifolia	Slender Rice-flower			
Polyscias sambucifolia	Elderberry Panax			
Pultenaea gunnii	Golden Bush-pea			
*Solanum aviculare	Kangaroo Apple			
Spyridium parvifolium	Dusty Miller			
Tetratheca ciliata	Pink-bells			
Climbers				
Billardiera mutabilis	Common Appleberry			
*Clematis aristata	Mountain Clematis			
Hardenbergia violacea	Purple Coral-pea			
Rubus parvifolius	Native Raspberry			
Ferns				
Adiantum aethiopicum	Common Maidenhair			
Blechnum cartilagineum	Gristle Fern			
Blechnum fluviatile	Ray Water~fern			
Blechnum minus	Soft Water-fern			
Blechnum nudum	Fishbone Water-fern			
Blechnum parrisiae	Common Rasp-fern			
Blechnum wattsii	Hard Water-fern			
Polystichum proliferum	Mother Shield-fern			
Herbaceous				
Acaena echinata	Sheep's Burr			
Acaena novae~zelandiae	Bidgee-widgee			
Acrotriche prostrata	Trailing Ground-berry			
Acrotriche serrulata	Honey~pots			
Australina pusilla subsp. muelleri	Chada Nattla			
Brunonia australis	Shade Nettle Blue Pincushion			
Dichondra repens	Kidney-weed			
	Soft Crane's-bill			
Geranium potentilloides Geranium solanderi s.l.	Austral Crane's-bill			
Goodenia humilis	Swamp Goodenia			
Goodenia lanata	Trailing Goodenia			
Hackelia latifolia	Forest Hound's-tongue			
	Running Postman			
Kennedia prostrata	Austral Stork's-bill			
Pelargonium australe	Austral Stock 8-Dill			

Botanical Name	Common Name	Stage 1	Stage 2	Stage 3
Veronica calycina	Hairy Speedwell			
Veronica plebeia	Trailing Speedwell			
Viola hederacea	Ivy~leaf Violet			
Wahlenbergia gracilis	Sprawling Bluebell			
Xanthosia dissecta s.l.	Cut-leaf Xanthosia			
Xerochrysum bracteatum	Golden Everlasting			
Grasses & Lilies				
Arthropodium milleflorum	Vanilla Lily			
Arthropodium strictum	Chocolate Lily			
Austrodanthonia setacea	Small-flowered Wallaby- grass			
Austrostipa densiflora	Dense Spear-grass			
*Austrostipa rudis	Veined Spear-grass			
Bulbine bulbosa	Bulbine Lily			
Burchardia umbellata	Milkmaids			
Dianella longifolia s.l.	Pale Flax-lily			
*Dianella revoluta s.l.	Black-anther Flax-lily			
Dianella tasmanica	Tasman Flax-lily			
Dichelachne rara	Common Plume-grass			
Echinopogon ovatus	Common Hedgehog-grass			
*Gahnia sieberiana	Red-fruit Saw-sedge			
Lomandra longifolia	Spiny-headed Mat-rush			
*Microlaena stipoides var. stipoides	Weeping Grass			
Poa ensiformis	Purple-sheath Tussock- grass			
Poa labillardierei	Common Tussock-grass			
Poa tenera	Slender Tussock-grass			
*Rytidosperma caespitosum	Common Wallaby-grass			
Rytidosperma geniculatum	Kneed Wallaby-grass			
Rytidosperma pallidum	Silvertop Wallaby-grass			
Stackhousia monogyna s.1.	Creamy Stackhousia			
Themeda triandra	Kangaroo Grass			
Wurmbea dioica	Common Early Nancy			

*Indicates species found on-site.

Stage 1 – Primary colonisers and prickly plants
Stage 2 – increased biodiversity
Stage 3 – increased biodiversity and infill of any gaps with species from
stages 1 & 2

This copied document is made available for the purpose of the planning process as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any

NB: Ferns may regenerate once canopy cover is met and established to reinstate microclimatic niches and weeds removed.

Table 5. Revegetation/Species list

Various Eucalypt species, including log habitat onsite

Sweet Bursaria.

Wattle mat-rush.

Velvet Grass

4.5 Weed classification

One of the most crucial negative impacts on the site is the proliferation and threat of environmental weeds.

The following categories exist for weed species in Victoria and Australia. Many of the onsite weeds discussed below fall into these categories, and definitions are defined as follows:

State Prohibited Weeds are either not currently present in Victoria but pose a significant threat if they were to be introduced; or are present and already pose a significant threat and it is reasonable that these weeds could be eventually eradicated from the State with vigilant controls. Control of these weeds is the responsibility of DPI across Victoria.

Regionally Prohibited Weeds are those not widely distributed across the region (Port-Phillip and Westernport) but capable of further spread. It is reasonable to assume that these weeds could be eventually eradicated from the region with vigilant controls. Control is the responsibility of both public and private land managers on their land and VicRoads on declared roads under Victorian Transport Act 1983, and DPI on roadside areas.

Regionally Controlled Weeds are those that exist in the region (Port Phillip and Westernport) and are usually widespread. Continued control measures are required to prevent further spread onto clean land. Control is the responsibility of both public and private land managers on their land, and VicRoads on declared roads under the Victorian Transport Act 1983.

Restricted Weeds are considered a threat to primary production, Crown Land, community health and the natural environment either in the State of Victoria or adjoining states having the great potential to spread in Victoria. There is no legal requirement for landholders to

control these weeds, however they cannot be traded or transported within Victoria (seed included). Although some restricted weeds are also classified as Declared Noxious Weeds and this status takes precedence.

Declared Noxious Weeds are those which do require control under the Catchment and Land Protection Act 1994, which states that all landowners and occupiers are responsible for managing noxious weeds on their land, as the plants have the potential to cause serious economic and/or environmental harm. These weeds should be reported to the local Shire if found on public land. Further information is available at www.dpi.vic.gov.au.

Weeds of National Significance are weeds which have been identified as part of a national initiative known as the National Weeds Strategy whereby 20 weeds of national significance were identified across all Australian states and territories, with a view to reducing the impact of these species on productive capacity and natural ecosystems. Selection criteria were as follows: invasiveness; impact; potential to spread; & socio-economic and environmental values.

Weed Species

Botanical Name	Common Name	Weed Status
Trees		
Acacia longifolia	Sydney Golden	DSE RS 131
	Wattle	
Fraxinus angustifolia	Desert Ash	DSE RS 11
Pinus radiata	Monterary Pine	DSE RS 6
Pittosporum undulatum	Sweet Pittosporum	DSE RS 10
Robinia pseudoacacia	Black Locust	DSE RS 75
Shrubs		
Genista linifolia	Mediterranean	DSE RS 12, CALP Act
	Broom	
Hakea salicifolia	Willow-leaf Hakea	DSE RS 201
Prunus cerasifera	Cherry Plum	DSE RS 96
Rubus fruticosus	Blackberry	WONS benchmark species
		High impact high invasive, Regionally
		Controlled
Climbers/ Creepers		
Asparagus asparagoides	Bridal Creeper	DSE RS 10
Hedera helix	English Ivy	DSE RS 1
Tradescantia fluminensis	Wandering Trad	DSE RS 20
Vinca major	Blue Periwinkle	DSE RS 15
Herbaceous		
Acanthus mollis	Oyster Plant	DSE RS 156
Acetosella vulgaris	Sheep Sorrel	DSE RS 43
Amaryllis belladonna	Belladonna Lily	
Chenopodium murale	Nettleleaf Goosefoot	DSE RS 241
Centaurium erythraea	Common Centaury	DSE RS 115
Cirsium vulgare	Spear Thistle	DSE RS 115, CALP Ac, RC.
Crocosmia x crocosmiiflora	Montbretia	DSE RS 3
Euphorbia characias	Mediterranean	
	Spurge	
Hypochaeris radicata	Cats Ear	DSE RS 115
Lysmachia arvensis	Scarlet Pimpernell	DSE RS 133
Lotus corniculatus	Bird's-foot Trefoil	DSE RS 176
Medicago lupulina	Black Medic	DSE RS 47

_	
Lemon Balm	DSE RS 102
Forget-me-not	DSE RS 239
Parrot's Feather	
Yellow Water-lily	
Ribwort	DSE RS 179
Dock	DSE RS 143
Black Nightshade	DSE RS 124
White Clover	DSE RS 41
Fragrant Violet	DSE RS 203
Arum Lily	DSE RS 21
Brown-top Bent-	DSE RS 94
grass	
Sweet Vernal grass	DSE RS 31
Couch grass	DSE RS 186
Umbrella Sedge	DSE RS 53
Cocksfoot Grass	DSE RS 97
Panic Veldt Grass	DSE RS 40
Yorkshire Fog Grass	DSE RS 52
Perennial Ryegrass	DSE RS 212
Paspalum	DSE RS 214
Kikuyu	DSE RS 159
	Forget-me-not Parrot's Feather Yellow Water-lily Ribwort Dock Black Nightshade White Clover Fragrant Violet Arum Lily Brown-top Bent-grass Sweet Vernal grass Couch grass Umbrella Sedge Cocksfoot Grass Panic Veldt Grass Yorkshire Fog Grass Perennial Ryegrass Paspalum

Table 6: Weeds found onsite

DSE RS = Department of Sustainability & Environment (DELWP) Ranking Score (1-243)

Ranking Score range 1–30 Very High Risk Weeds 31–60 High Risk Weeds 61–90 Moderately High Risk Weeds 91–120 Medium Risk Weeds 121–243 Lower Risk Weeds EVC = Ecological Vegetation Class RC= Regionally Controlled RW = Restricted Weed CALP Act = Catchment and Land protection Act 1994 NH = Neighbourhood weed WONS = Weed of National

Weed Species – particular control measures.

Woody Weeds

Many of these species were planted as ornamental species, however, they could potentially have offspring, therefore they should be monitored. Small seedling plants can be hand pulled, and large mature specimens can be cut and painted whereby the freshly cut stump is quickly painted with herbicide (undiluted glyphosate, use 'dabber' bottle).

Sweet Pittosporum

This species is present as monocultures in sections of the block, and a few seedlings noted, beginning to expand its current range. It has the potential to become the dominant weed species if left unmanaged, as once a mature specimen establishes only its own babies will grow beneath it. This species is also posing a significant increase of fire threat. To control it, seedlings can be hand pulled when soils are moist while larger trees need to be cut and immediately painted. Failure to 'paint' the freshly cut stump with herbicide (undiluted glyphosate, use 'dabber' bottle) will result in the stump 'coppicing' (re-shooting) and very dense, multi-stemmed plants resulting. Painting should be done as soon as possible (within 30 seconds) after cutting so the poison is drawn down with the sap.

Blackberry

Present onsite as thickets, it is essential to control, however due to the potential of SBB or other native fauna using the thickets the removal should be undertaken in stages and with care, monitoring for any native fauna utilising the brambles as habitat. This should coincide with revegetation of prickly shrubs to offer replacement habitat.

Small plants can be dug out or spot sprayed. With larger brambles, the best option is to 'cut and paint' the stems using a 'dabber' with undiluted Glyphosate. The fruit is spread by water and eaten by birds and small mammals; brambles can also propagate from self-layering rhizomatous stems (daughter plantlets) and also from the weed seed bank. Seeds are generally low viability and seedlings are susceptible to competition and shading from indigenous vegetation, therefore the aim would be to control rogue outbreaks in bush areas and encourage indigenous regeneration to out compete. Chemical control is best implemented between the months of October to May. It can be confused with the indigenous Native Raspberry (*Rubus parvifolius*), which is much smaller in leaf, fruit, flower and stem, and often inhabits the same niche. The landholder has a legal obligation to control this weed.

Climbing weeds

The creeping/climbing species spread via seed and vegetatively from dumped garden waste, if left unmanaged they will smother indigenous species while establishing underground stems and stored seed that potentially will become impermeable for desirable species and water penetration. They have been plants used in gardens with uses in flower arranging and ornamental uses, however they can quickly invade bushland areas. Young plants can be dug out by hand; larger infestations can be sprayed with a Glyphosate herbicide prior to flowering or just as flowering begins. Careful follow up is required as it is very likely to regrow from the extensive underground rhizomes and seed.

Ground covering and herbaceous weeds

The herbaceous species do not pose an immediate threat to the biodiversity however, as other major infestations of weeds are cleared and controlled, this will present the opportunity for such species to colonise and therefore their presence and potential control measures should be noted. As they proliferate, they smother any indigenous vegetation as their growth rate is faster and they also prevent any plants attempting to emerge.

One of the best control methods for these species is to establish natural vigorous regeneration of pioneer indigenous species extremely effective control. Careful spot spraying with herbicide, or hand pulling can easily control small outbreaks. On-going monitoring is vital to prevent re-infestations.

Exotic Grass species

There are a wide variety of exotic grasses used as pasture species. Most have light seed that is easily spread via wind and water. Paspalum has sticky seeds that also be spread via people or animals walking past and taking the seed with them, also it is more persistent in the soil so follow up is essential for successful eradication. The best way to control these plants in fringe areas is through competition by healthy indigenous vegetation. Where removal is required hand pulling and chemical controls can be undertaken. The running type grasses; such as Kikuyu may require several applications to eradicate the repeated regrowth that occurs from underground roots. The Umbrella Sedge produces masses of seed and the leaves are quite waxy so a wetting agent added to an herbicide treatment would be beneficial. Treatment of all species is best undertaken prior to seed set.

Desert Ash (& Spurge & Dock)

Sydney Golden Wattle

Sweet Pittosporum, Blackberry & Bracken. Mediterranean Broom,

Sweet Pittosporum & Red-fruit Saw-sedge

Planted Sweet Pittosporum in fence area.

Bridal Creeper

Ivy Arum Lily

Giant Taro Montbretia

Belladonna Lily. Spear Thistle

Forget-me-not.

Black Medic

Black Nightshade, Cape Weed, Panic Veldt. Umbrella Sedge

Wandering Trad.

Nettleleaf Goosefoot

Centaury.

Paspalum

Fragrant Violet

Pasture grasses & Bird's-foot Trefoil

Conclusions

There is very little indigenous vegetation remaining on the long-cleared properties and road reserve / nature-strip along Petty Rd that links them to the reserve. What is present is providing some habitat for fauna. There were many logs and upright stags, hollowed areas within vegetation, including Blackberries that could serve as Southern Brown Bandicoot habitat, although none were seen, neither was any evidence of them ie. scats.

The site at 8 Wattletree RD Bunyip (including reserve) is currently covered by more than 50% high threat weed species and of the total of 77 plant species documented onsite 55 out of 77 were weed species (71%).

There were 22 indigenous species identified (22/77=29%) which amounted to 30% coverage onsite. Many of the indigenous species were single specimens with very little coverage, however most were at maturity enough to set seed, which is encouraging.

Of the 22 indigenous species, only one of these *Eucalyptus fulgens* (Green Scentbark) is considered rare/endangered, across Victoria but is actually locally ubiquitous and easily propagated. The removal of these species onsite and on the road reserve is not preferable however may be necessary to facilitate access to the lots. It is recommended that these trees remain in situ for as long as possible whilst the reserve is being establish as alternative habitat. These trees have been offset as a measure of good faith to ensure no net loss of vegetation (Cl.52.17). This species and other indigenous ones should however be part of any landscaping onsite (in gardens) and revegetation of road reserve areas and use as street trees.

Development onsite being the subdivision of the paddock area into residential lots seems inevitable due to the residential zoning and development of the local area and suburb. The reservation of the conservation area as a public open space will mitigate as much of the habitat loss and adverse impact as possible by setting aside a safe area of the land holding to remain as natural bushland and conserve floral and faunal biodiversity, Large Old Trees as well as habitat provision and bio-link.

This is an excellent result considering the amount of development in the immediate area, despite the removal and loss of Large and Very Large Old Trees. In fact, if the development facilitates proper management of the site through staged weed removal to prevent habitat

loss and instates revegetation and supports regeneration of the public open space using species indigenous to the Lowland Forest EVC 16, and species identified in this survey, outcomes for the site will be positive as will the outcomes for the Southern Brown Bandicoot if they choose to inhabit this area.

Glossary

Biodiversity – the variety of all life-forms, the different plants, animals and micro-organisms, the genes they contain, and the ecosystems of which they form a part.

EVC – **Ecological Vegetation Class** – a type of native vegetation classification that is described through a combination of its floristic, life form, and ecological characteristics, and through an inferred fidelity to particular environmental attributes.

TPZ – Tree Protection Zone

References

Agriculture Victoria (DEDJTR) (2022) Victorian Resources Online *Soils of the Cranbourne ~ Koo Wee Rup Region – Eastern section.*

https://vro.agriculture.vic.gov.au/dpi/vro/portregn.nsf/pages/ppw_soil_cranbourne_east

Cardinia Shire Council: https://www.casey.vic.gov.au

Cardinia Shire Council (2023) "Protecting our endangered species Factsheet – Southern Brown Bandicoot."

https://creating.cardinia.vic.gov.au/Southern-Brown-Bandicoot-habitat-protection

Ecology Australia Pty Ltd (2009) "Southern Brown Bandicoot Strategic Management Plan for the former Koo Wee Rup Swamp Area:", Project: 08-26. Prepared for: Cardinia Shire Council, Casey City Council and Melbourne Water. Ecology Australia, Fairfield, 3078

EPBC Act (2016) "Conservation Advice Isoodon obesulus obesulus southern brown bandicoot (eastern)". Threatened Species Scientific Committee. http://www.environment.gov.au/biodiversity/threatened/species/pubs/68050-conservation-advice-05052016.pdf

Cardinia Shire Council (2023) "*The Southern Brown Bandicoot*". https://www.cardinia.vic.gov.au/info/20018/environment/313/the_southern_brown_bandicoot

DELWP (Department of Environment, Land, Water and Planning) *Naturekit – EVC & VBA information*. http://maps.biodiversity.vic.gov.au/viewer/?viewer=NatureKit

DELWP (Department of Environment, Land, Water and Planning) *Vicplan* https://mapshare.vic.gov.au/vicplan/

Nobelius Land Surveyors (2022) Feature & Level Plans, 8 Wattletree Road, Bunyip. Pakenham, 3810.

PPWCMA (2011) *Port Phillip and Western Port Invasive Plants and Animals Strategy.* Port Phillip and Western Port Catchment Management Authority, Frankston, Vic.

VNPA (2022) "Caught on Camera: 10 years of Citizen Science wildlife monitoring in Bunyip State Park" PARK WATCH Article November 2022

https://vnpa.org.au/caught~on~camera~10-years-of-citizen-science-wildlife-monitoring~in-bunyip-state-park/

Appendix A: Vascular Plants at 8 Wattletree Rd, Bunyip, 3815

Survey conducted March, 2023 by Healesville Plants.

Key:	*	Non-indigenous species, natives of Australia				
v	**	Non-indigenous species, exotics from other countries				
	EW	Environmental Weed				
	Nox	Declared Noxious Weed				
	RC	Regionally Controlled				
	WNS	Weed of National Significan	nce			
	8	Garden plant, species occurs in garden beds or similar situation				
VIDOT Comos						
	rvation status		CD.			
EPBC	EX	Extinct	CR	Critically Endangered		
	EN	Endangered	VU	Vulnerable		
FFG	L	Listed as Threatened	N	Nominated for listing as Threatened		
DCC adminage	7 X	Extinct in Victoria	e	Endangered in Victoria		
DSE advisory						
DSE advisory	v	Vulnerable in Victoria	r	Rare in Victoria		

Family	Scientific Name	Common Name	Notes
FERNS AND FER	N ALLIES		
DENNSTAEDIACEAE LEMNACEAE MONOCOTYLED	Pteridium esulentum Lemna disperma ONS	Bracken Fern Duckweed	
AMARYLLIDACEAE	Amaryllis belladonna	Belladonna Lily	**EW
	Crinum spp.	Crinum Lily	**g
	Cyperus eragrostis	Drain Flat-sedge.	**EW
	Eleocharis sphacelate	Tall Spike-rush	
	Gahnia radula	Thatch Saw-sedge	
	Gahnia sieberiana	Red-fruit Saw-sedge	
IRIDACEAE	Crocosmia x crocosmiiflora	Montbretia	**EW
LILIACEAE	Dianella revoluta	Black-anther Flax-lily	
JUNCACEAE	Juncus gregiflorus	Green Rush	
	Juncus pallidus	Pale Rush	
	Juncus planifolius	Broad-leaf Rush	
POACEAE	Agrostis capillaris	Brown-top Bent	**EW
	Anthoxanthum odoratum	Sweet Vernal Grass	**EW

	Austrostipa rudis	Veined Spear Grass	any pro name
	Cynodon dactylon	Couch	**EW
	Dactylis glomerata	Cocksfoot	**EW
	Ehrharta erecta	Panic Veldt Grass	** EW
	Holcus lanatus	Yorkshire Fog Grass	**EW
	Joycea pallida	Silvertop Wallaby Grass	
	Lolium perenne	Ryegrass	**EW
	Microlaena stipoides	Weeping Grass	
	Paspalum dilatatum	Paspalum	**EW
	Pennisetum clandestina	Kikuyu	**EW
	Poa morrisii	Velvet Grass	
	Rytidosperma caespitosum	Common Wallaby-grass	
XANTHORRHOAECEAE	Lomandra filiformis	Wattle Mat-rush	
DICOTYLEDONS			
ACANTHACEAE	Acanthus mollis	Oyster Plant	**EW
AMARANTHACEAE	Chenopodium murale	Nettleleaf Goosefoot	**EW
APOCYNACEAE	Vinca major	Blue Periwinkle	**EW
	Zantedeschia aethiopica	Arum Lily	**EW
ARACEAE	Alocasia macrorrhiza	Giant Taro	**g
ARALIACEAE	Hedera helix	English Ivy	**EW
ASPARAGACEAE	Asparagus asparagoides	Bridal Creeper	**EW
ASTERACEAE	Arctotheca calendula	Cape Weed	**EW
	Cirsium vulgare	Spear Thistle	**RC
	Hypochoeris radicata	Cat's Ear / Flatweed	** EW
BETULACEAE	Betula alba	Silver Birch	**g
BORAGINACEAE	Myosotis arvensis	Forget-me-not	**EW
CASUARINACEAE	Allocasuarina paludosa	Swamp She-oak	
COMMELINACEAE	Tradescantia fluminensis	Wandering Trad	**EW
EUPHORBIACEAE	Euphorbia characias	Mediterranean Spurge	**EW
FABACEAE	Genista linifolia	Mediterranean Broom	**EW
	Lotus corniculatus	Bird's-foot Trefoil	**EW
	Medicago lupulina	Black Medic	**EW
	Robinia pseudoacacia	Black Locust	**EW
	Trifolium repens	White Clover	**EW
GENTIANACEAE	Centaurium erythraea	Common Centaury	**EW
HALORAGACEAE	Gonocarpus tetragynus	Common Raspwort	
	Myriophyllum aquaticum	Parrot's Feather	**EW
LAMIACEAE	Melissa officinalis	Lemon Balm	*EW
LYTHRACEAE	Lythrum hyssopifolia	Lesser Loosestrife	
MIMOSACEAE	Acacia longifolia	Sallow Wattle	*EW
	Acacia melanoxylon	Blackwood	
MYRTACEAE	Acmena smithii var. minor	Small-leaved Lily-pily	*g
	Callistemon citrinus	Crimson Bottlebrush	*g

	Callistemon viminalis	Weeping Bottlebrush	*g
	Eucalyptus fulgens	Green Scentbark	
	Eucalyptus globoidea	White Stringybark	
	Eucalyptus obliqua	Messmate	
	Eucalyptus radiata	Narrow-leaf Peppermint	
	Leptospermum cv.	Purple-leaf Tea-tree	*g
NYMPHAEACEAE	Nymphaea mexicana	Yellow Water-lily	**EW
OLEACEAE	Fraxinus angustifolia	Desert Ash	**EW
PHYLLANTHACEAE	Poranthera microphylla	Small Poranthera	
PINACEAE	Pinus radiata	Radiata Pine	**EW
PITTOSPORACEAE	Bursaria spinosa	Sweet Bursaria	
	Pittosporum undulatum	Sweet Pittosporum	*EW
PLANTAGINACEAE	Plantago lanceolata	Ribwort	**EW
POLYGONACEAE	Persicaria decipiens	Slender Knotweed	
	Rumex asetosella	Sheep Sorrel	**EW
	Rumex spp.	Dock	**EW
PRIMULACEAE	Lysmachia arvensis	Scarlett Pimpernell	**EW
PROTEACEAE	Banksia spinulosa cv.	Giant Candles Banksia	*g
	Hakea salicifolia	Willow-leaf Hakea	*EW
RANUNCULACEAE	Clematis aristata	Austral Clematis	
ROSACEAE	Malus domestica	Apple	**g
	Prunus cerasifera	Cherry Plum	**EW
	Rubus fruticosus	Blackberry	** WONS, RC
SOLANACEAE	Solanum aviculare	Kangaroo Apple	
	Solanum nigrum	Black Nightshade	**EW
VIOLACEAE	Viola odorata	Fragrant Violet	**EW
VITACEAE	Parthenocissus quinquefolia	Virginia Creeper	**g

Appendix B: Weed List- Port Phillip and Westernport CMA

List of declared noxious weeds in Port Phillip and Western Port region

The following table contains weed species in the Port Phillip and Western Port region that were gazetted under the CaLP Act (Government Printer for Victoria 2010). The table displays each gazetted weed, their noxious weed category, and listings as a very high risk environmental weed (DSE 2009 a-e) and/or Weed of National Significance.

S=State Prohibited; P=Regionally prohibited; C=Regionally controlled; R=Regionally restricted.

Present onsite

^{*} Branched Broomrape is also a declared exotic disease under the Plant Health and Plant Products Act 1995.

^{**} Except Salix alba var. caerulea, Salix alba x matsudana, Salix babylonica, Salix X calodendron, Salix caprea 'Pendula', Salix matsudana 'Aurea', Salix matsudana 'Tortuosa', Salix myrsinifolia and Salix X reichardtii.

Common name	Weed species	Common name Category of noxious weed species gazetted under CaLP Act	Very high risk environmental weed	Weed of National Significance (WON)
African Boxthorn	Lycium ferocissimum	C	•	
African Daisy	Senecio pterophorus	С		
African Feather-grass	Pennisetum macrourum	Р	•	
African Love-grass	Eragrostis curvula	С	•	
Alligator Weed	Alternanthera philoxeroides	S	•	•
Amsinckia	Amsinckia spp.	С		
Angled Onion	Allium triquetrum	R	•	
Apple of Sodom	Solanum linnaeanum	С		
Artichoke Thistle	Cynara cardunculus	С		
Athel Pine, Tamarisk	Tamarix aphylla	R		•
Bathurst Burr	Xanthium spinosum	С		
Bear-skin Fescue	Festuca gautieri	S		
Bindweed	Convolvulus arvensis	С		
Black Knapweed	Centaurea nigra	S		
Blackberry Boneseed/Bitou bush	Rubus fruticosus	C	•	<u> </u>
	Chrysanthemoides monilifera		•	•
Branched Broomrape*	Orobanche ramosa	S		
Bridal Creeper	Asparagus asparagoides	R	•	•
Buffalo Burr	Solanum rostratum	P		1
Cabomba Californian/Parannial Thiatla	Cabomba caroliniana	R	•	•
Californian/Perennial Thistle Caltrop	Cirsium arvense Tribulus terrestris	C		1
Cantrop Camel Thorn		S		
Camer Fnorm Cape Broom/ Montpellier	Alhagi maurorum	C	•	
Broom	Genista monspessulana		•	
Cape Tulip (one-leaf)	Moraea flaccida	С		
Cape Tulip (two-leaf)	Moraea miniata	С		
Chilean Cestrum	Cestrum parqui	Р		
Chilean Needle-grass	Nassella neesiana	R	•	•
Devil's Claw (Purpleflower)	Proboscidea Iouisianica	P P		
Devil's Claw (Yellowflower) Dodder	Proboscidea lutea	C		
English Broom	Cuscuta spp. Cytisus scoparius	C	•	
Fennel	Foeniculum vulgare	R	•	
Flax-leaved Broom	Genista linifolia	C		
Giant Knotweed	Fallopia sachalinensis	S	•	
Giraffe Thorn	Acacia erioloba	S		
Golden Thistle	Scolymus hispanicus	C		
Gorse/Furze	Ulex europaeus	C	•	•
Great Mullein	Verbascum thapsus	R		
Hardheads/ Russian Knapweeds	Rhaponticum repens	P		
Hawkweed	Hieracium spp.	S	•	<u> </u>
Hawthorn	Crataegus monogyna	C	•	
Hemlock	Conium maculatum	C		†
Hoary Cress	Lepidium draba	C		†
Horehound	Marrubium vulgare	C	•	1
Horsetail	Equisetum spp.	S	•	1
Hymenachne/ Olive Hymenachne	Hymenachne amplexicaulis	R		•
Illyrian Thistle	Onopordum illyricum	Р		†
Ivy-leafed Sida	Malvella leprosa	S		†
Japanese Knotweed	Fallopia japonica	S	•	1
Japanese Knotweed hybrid	Fallopia x bohemica	S		
Karoo Thorn	Acacia karroo	S	•	
Khaki Weed	Alternanthera pungens	Р		
Lagarosiphon	Lagarosiphon major	S		
Lantana	Lantana camara	R		•
Lobed Needle Grass	Nassella charruana	S	•	
Marijuana	Cannabis sativa	S		
Mesquite	Prosopis spp.	S		
Mexican Feather Grass	Nassella tenuissima	S	•	

Weed species Common name	dissemination, distribution or copying of this document is strictly promoted				•
Nodgora Buri Californian Burr Nogorora Burr Ox-eye Dalsy Chinin Weed Asphodelus fistulosus R Ox-eye Dalsy Leucanthemum wügare C Parkinsonia Parkinsonia Parkinsonia aculeata R Poverty Weed Amorosi glabra R Poverty Weed Amorosi glabra R Poverty Weed Amorosi glabra R Proverty Weed Anorosi glabra R Proverty Weed Anorosi glabra R Proverty Weed Anorosi glabra Acaciar niotica subsp. Indica C Pinicky Pear (drooping) Dyuntia moracantha C Dyuntia moracantha C Salvinia C C Cardiaus Indiausia C Salvinia C C C C C C C C C C C C C	Common name	Weed species	Category of noxious weed species gazetted under	environmental	National Significance
Noogora Burri Californian Burr Onion Weed Asphodelus fistulosus R Onion Weed Asphodelus fistulosus R Parbasily-ol-the-Valley Parpas Lily-ol-the-Valley Parpas Lily-ol-the-Valley Parpas Lily-ol-the-Valley Parkinsonia Parkinsonia acudeata R Parthenium Weed Parkinsonia acudeata R Parthenium Weed Parthenium hysterophorus S Patenium Robert Parthenium Weed Parthenium hysterophorus S Patenium Robert Parthenium Weed Parthenium hysterophorus S Patenium Robert Perennial Ragweed Ambrosia psilostactya Porenty Weed Ina axillaris Poverty Weed Ina axillaris Prickly Pear (drocping) Opunta in acudeata Acacia nilotica subsp. Indica Prickly Pear (drocping) Opunta in acudeata C Senecio ja cobaea C Rubber Vine Carthamus Instabuto C Saffron Thistle C Carthamus Instabuto C Saffron Thistle C Carthamus Instabuto C Social-Heraldic Thistle Onopordum acanthium P Serrated Tussock Nassella Incholoma C Scoich-Heraldic Thistle Onopordum acanthium P Serrated Tussock Nassella Incholoma C Selenton Weed Conditile Juneae C Solicher Thistle Acarduus teunillous C Carduus teunillous C C Carduus teunillous C C Solicher Thistle Onopordum acanthium P Solicher Shore Thistle Carduus teunillous C C Carduus teunillous C C Solicher Thistle Onopordum acanthium P Solicher Shore Thistle Carduus teunillous C C Solicher Thistle Onopordum acanthium C Solicher					•
Burr Ox-eye Dalsey Dx-eye Dalsey Dx-eye Dalsey Leucanthemum wulgare Cx Dx-eye Dalsey Leucanthemum wulgare Cx Dx-eye Dalsey Dx-eye Dalsey Dx-eye Dalsey Leucanthemum wulgare Cx Dx-eye Dalsey Dx-eye Dalsey Dx-eye Dalsey Dx-eye Dalsey Dx-eye Dalsey Dx-eye Dx					
Ox-eye Daisy	Burr	Xanthium strumarium	С		
Pampas Lily-of-the-Valley Salpichroa origanifolia C Parkinsonia Parkinsonia Reviewa R					
Partinsonia Partinsonia aculeata R Partinsonia Partinsonia Rapthenium Partinsonia Rapthenium Rapthenium C Partinsonia Rapthenium C Partinsonia Rapthenium C Partinsonia Partinsoni					
Parthenium Weed Parthenium hysterophorus S Paterson's Curse Echium plantagineum C Perennial Ragweed Ambrosia psilostachya S Pond Apple Annona glabra R Powerty Weed Iva axillaris S Pratire Ground Cherry Physalis hederifolia C Phickly Acacia Acacia indica subsp. Indica R Prickly Pear (drooping) Opunia monacantha C Prickly Pear (drooping)		Salpichroa origanifolia			
Paterson's Curse	1 0111111111111111111111111111111111111				
Perennial Ragweed					•
Powerty Weed				•	
Poventy Weed Na axillaris S Prairie Ground Cherry Physalis Intedeffolia C Prickly Acacia Acacia nilotica subsp. Indica R Prickly Pear (drooping) Opunita monacantha C Prickly Pear (drooping) Opunita stricta C Ragwort Senecio jacobaea C Rubber Vine Cryptostegi grandiflora R Saffron Thistle Carthamus lanatus C Saffron Thistle Carthamus lanatus C Salvinia Salvinia molesta S Sand Rocket/Sand Mustard Dipotaxis tenufolia C Scotch/Heraldic Thistle Onopordum acanthium P Scritch/Heraldic Thistle Onopordum acanthium P Scritch/Heraldic Thistle Onopordum acanthium P Scritch/Heraldic Thistle Onopordum acanthium P Skeleton Weed Chondrilla juncea P Slender/Shore Thistle Carduus tenuiflorus C. C. pycnocephalus Soldier Thistle Picnomon acarna P Slender/Shore Thistle Picnomon acarna P Soursob Oxalis pes-caprae R Spiny Broom Calicotome spinosa P Spiny Broom Calicotome spinosa P Spiny Broom Calicotome spinosa P Spiny Rush Juncus acutus C St Barnaby's Thistle Cendrume solstitialis P Spiny Rush Juncus acutus C St Barnaby's Thistle Centaurea solstitialis P St St John's Wort Hypericum tetrapterum C St St Harriaby's Thistle Centaurea solstitialis P Sterless Thistle Onopordum acaulon P					•
Praise Ground Cherry Physalis hederifolia C Prickly Pear (drooping) Acacia in iotica subsp. Indica R Prickly Pear (drooping) Opuntia monacantha C Prickly Pear (drooping) Opuntia monacantha C Prickly Pear (erect) Opunitia stricta C Ragwort C Senecio Jacobaea C C Rubber Vine C Cyptostegia grandiflora R Saffron Thistle C Carthamus Inantus C C Salvinia Salvinia molesta S • • • Sand Rocket/Sand Mustard Diplotavis tenulfolia C Salvinia molesta S • • • Sand Rocket/Sand Mustard Diplotavis tenulfolia C Scotch/Heraldic Thistle Onopordum acanthum P Serrated Tussook Nassella trichotoma C Silverleaf Nightshade Solanum elaeagnifolium P Skeleton Weed C Chondrilla juncea P Selender/Shore Thistle Carduus tenulflorus C Carduus tenulflorus C Carduus tenulflorus C Carduus tenulflorus C C. Cyponocophalius Soldier Thistle Pictorom acama P P Soursob Oxalis pes-caprae R • Pictoromo acama P Soursob Oxalis pes-caprae R • Spear Thistle Circium vulgae C Silver Grand Solanum Vulgae C Silver Mustard Solanum Vulgae C Silver Solanum					
Prickly Acacia					
Prickly Pear (drooping) Opuntia monacantha C Prickly Pear (erect) Opuntia stricta C Ragwort Senecio jacobaea C Rubber Vine Cryptostegia grandiflora R Saffron Thistle Carthamus lanatus C Salvinia Salvinia molesta S Sand Rocket/Sand Mustard Diplotaxis tenuifolia C Scotch/Heraldic Thistle Onpoordum acanthium P Scotch/Heraldic Thistle Onpoordum acanthium P Serrated Tussock Nassella trichotoma C Stivenedar Nightshade Chondrilla juncea P Skeleton Weed Chondrilla juncea P Slender/Shore Thistle Cardrus tenuiflorus C Chyproccephalus C C Soldier Thistle Picnomon acarna P Soursob Oxalis pes-caprae R • Spiny Burr Grass/ Gentle Annie C Spiny Burr Grass/ Gentle Cancture solutions P Spiny Emex Emex australis P	Prickly Acacia	Acacia nilotica subsp. Indica			•
Ragwort Senecio jacobaea C Nubber Vine Cryptostegia grandiflora R Saffron Thistle Carthamus lanatus C Salvinia Salvinia Salvinia Molesta S • • • • • • • • • • • • • • • • • •			С		
Rubber Vine	Prickly Pear (erect)				
Salvinia Carthamus lanatus C Sand Rocket/Sand Mustard Salvinia molesta S Sand Rocket/Sand Mustard Diplotaxis tenuifolia C Scotch/Heraldic Thistle Onopordum acanthium P Serrated Tussock Alassella trichotoma C • Silverleaf Nightshade Solanum elaeagnifolium P Skeleton Weed Chondrilla juncea P Slender/Shore Thistle Cardus tenuiflorus C Soldier Thistle Cardus tenuiflorus C Soldier Thistle Picnomon acanna P Soursob Oxalis pes-caprae R Soursob Oxalis pes-caprae R Spiny Broom Calicotome spinosa P Spiny Broom Calicotome spinosa P Spiny Burr Grass/ Gentle Cenchrus longispinus P Annie Emex australis P Spiny Burr Grass/ Gentle Cenchrus longispinus P Annie Emex australis P Spiny Burr Grass/ Gentle Cenchrus longispinus	Ragwort	,			
Salvinia Salvinia molesta S					•
Sand Rocket/Sand Mustard Diplotaxis tenuitolia C Scotch/Heraldic Thistle Onopordum acanthium P Serrated Tussock Nassella trichotoma C • • • • • • • • • • • • • • • • • •					
Scottch/Heraldic Thistle Onopordum acanthium P Serrated Tussock Nassella trichotoma C • • • • • • • • • • • • • • • • • •				•	•
Serrated Tussock Nassella trichotoma C					
Sikerleaf Nightshade Solanum elaeagnifolium P Skeleton Weed Chondrill juncea P Skeleton Weed Chondrill juncea P Slender/Shore Thistle Carduus tenuiflorus C C. pycnocephalus Soldier Thistle Picnomon acama P Soursob Oxalis pes-caprae R • • Soursob Oxalis pes-caprae R • • Span Thistle Cirsium vulgare C Spiny Broom Calicotome spinosa P Spiny Rush Juncus acutus C • Starnaby's Thistle Centaurea solsitialis P P Starnaby's Thistle Centaurea solsitialis P • Starnaby's Thistle Centaurea solsitialis P • Star Thistle Centaurea calcitrapa P Stemless Thistle Centaurea calcitrapa P Stemless Thistle Centaurea calcitrapa P Stemless Thistle Conpordum acaulon P Stimps Thistle Centaurea calcitrapa P Stemless Thistle Centaurea calcitrapa C C C C C C C C C				_	
Skeleton Weed Slender/Shore Thistle Carduus tenuiflorus C.pycnocephalus Soldier Thistle Picnomon acarna P Soursob Oxalis pes-caprae R P Spiny Broom Calicotome spinosa P Spiny Burr Grass/ Gentle Annie Spiny Emex Emex australis P Spiny Rush Juncus acutus C St Peter's Wort Hypericum perforatum C St Peter's Wort Hypericum tetrapterum C Star Thistle Contaurea solstitialis P Starn District Compordum acaulon P Stemiess Thistle Dinopordum acaulon P Stinkwort Dittrichia graveolens C Sweet Briar Rosa rubiginosa C Sweet Briar Rosa rubiginosa C Thorn Apple (Common) Datura stramonium Datura stramonium C Thorn Apple (Long-spine) Datura ferox C Tufted Honeyflower Melianthus altissima C Rosa rubiginos R R R R R R R R R R R R R R R R R R R				•	•
Soldier Thistle	Skeleton Weed		•		
Soldier Thistle		Carduus tenuiflorus			
Soursob Cxalis pes-caprae R -	Soldier Thistle		Р		
Spear Thistle Cirsium vulgare C Spiny Broom Calicotome spinosa P Spiny Burr Grass/ Gentle Cenchrus Iongispinus P Annie Femex australis P Spiny Emex Emex australis P Spiny Rush Juncus acutus C St Barnaby's Thistle Centaurea solstitialis P St John's Wort Hypericum perforatum C St Peter's Wort Hypericum tetrapterum C Star Thistle Centaurea calcitrapa P Stemless Thistle Onopordum acaulon P Stemless Thistle Onopordum acaulon P Stinkwort Dittrichia graveolens C Sweet Briar Rosa rubiginosa C Tangled Hypericum Hypericum triquetrifolium S Thorn Apple (Common) Datura stramonium C Thorn Apple (Recurved) Datura inoxia P Topped Lavender Lavandula stoechas R Tree of Heaven Allanthus altissima C Tut	Soursob		R	•	
Spiny Burr Grass/ Gentle Annie Spiny Emex Spiny Rush Spiny Rush Juncus acutus C St Barnaby's Thistle Centaurea solstitialis St Peter's Wort Hypericum perforatum C Star Thistle Centaurea calcitrapa P Stemless Thistle Centaurea calcitrapa P Stemless Thistle Conopordum acaulon P Stinkwort Dittrichia graveolens C Sweet Briar Rosa rubiginosa C Tangled Hypericum Hypericum triquetrifolium Thorn Apple (Common) Datura stramonium C Thorn Apple (Long-spine) Datura inoxia P Topped Lavender Lavandula stoechas Tree of Heaven Alianthus altissima Tufted Honeyflower Melianthus comosus C Ware Bugloss Echium vulgare C Water Hyacinth Eichhomia crassipes S Whele Cactus Opuntia robusta R Wild Graic Wild Mignonette Watsonia meriana var. bulbililitera	Spear Thistle	Cirsium vulgare	C		
Annie Spiny Emex Spiny Rush Juncus acutus C St Barnaby's Thistle Centaurea solstitialis P • St John's Wort Hypericum perforatum C St Peter's Wort Hypericum tetrapterum C Ster Thistle Centaurea calcitrapa P Stemless Thistle Contourea caulon P Stinkwort Dittrichia graveolens C Sweet Briar Rosa rubiginosa C Tangled Hypericum Hypericum triquetifolium S Thorn Apple (Common) Datura stramonium C Thorn Apple (Recurved) Datura inoxia Tree of Heaven Allanthus altissima C Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Variegated Thistle Silybum marianum C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P Wild Garlic Allium vineale R R Wild Mignonette Reseda luteola Watsonia Watsonia Watsonia Watsonia Watsonia Watsonia Watsonia C • • • • • • • • • • • • • • • • • •					
Spiny Rush St Barnaby's Thistle Centaurea solstitialis P St John's Wort Hypericum perforatum C St Peter's Wort Hypericum tetrapterum C Star Thistle Centaurea calcitrapa P Stemless Thistle Onopordum acaulon P Stinkwort Dittrichia graveolens C Sweet Briar Rosa rubiginosa C Tangled Hypericum Hypericum triquetrifolium S Thorn Apple (Common) Datura stramonium C Thorn Apple (Recurved) Datura ferox Topped Lavender Lavandula stoechas R Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare Water Hyacinth Eichhornia crassipes R Wild Garlic Allium vineale Resea luteola Wild Watsonia C C - • - • - • - • - • - • -	Annie		•		
St Barnaby's Thistle		Emex australis			
St John's Wort Hypericum perforatum C St Peter's Wort Hypericum tetrapterum C Star Thistle Centaurea calcitrapa P Stemless Thistle Onopordum acaulon P Stinkwort Dittrichia graveolens C Sweet Briar Rosa rubiginosa C Tangled Hypericum Hypericum triquetrifolium S Thorn Apple (Common) Datura stramonium C Thorn Apple (Recurved) Datura ferox C Thorn Apple (Recurved) Datura inoxia P Topped Lavender Lavandula stoechas R Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus C Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseada luteola R Wild Watsonia Watsonia meriana var. bulbillifera					
St Peter's Wort Hypericum tetrapterum C Star Thistle Centaurea calcitrapa P Stemless Thistle Onopordum acaulon P Stinkwort Dittrichia graveolens C Sweet Briar Rosa rubiginosa C Tangled Hypericum Hypericum triquetrifolium S Thorn Apple (Common) Datura stramonium C Thorn Apple (Recurved) Datura ferox C Tangled Lavender Lavandula stoechas R Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus C Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Mignonette Reseada luteola R Wild Mignonette Dipsacus fullonum C Water la Sulyaum mariana var. bulbillifera				•	
Star Thistle					
Stemless Thistle					
Stinkwort Dittrichia graveolens C Sweet Briar Rosa rubiginosa C Tangled Hypericum Hypericum triquetrifolium S Thorn Apple (Common) Datura stramonium C Thorn Apple (Long-spine) Datura ferox C Thorn Apple (Recurved) Datura inoxia P Topped Lavender Lavandula stoechas R Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus C Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola Watsonia Watsonia meriana var. bulbillifera			•		
Sweet Briar Rosa rubiginosa C Tangled Hypericum Hypericum triquetrifolium S Thorn Apple (Common) Datura stramonium C Thorn Apple (Long-spine) Datura ferox C Thorn Apple (Recurved) Datura inoxia P Topped Lavender Lavandula stoechas R Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus C Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Watsonia Watsonia meriana var. bulbillifera					
Tangled Hypericum Hypericum triquetrifolium S Thorn Apple (Common) Datura stramonium C Thorn Apple (Long-spine) Datura ferox C Thorn Apple (Recurved) Datura inoxia P Topped Lavender Lavandula stoechas R Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus C Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Water Hyasinia Watsonia meriana var. bulbillifera					
Thorn Apple (Common) Datura stramonium C Thorn Apple (Long-spine) Datura ferox C Thorn Apple (Recurved) Datura inoxia P Topped Lavender Lavandula stoechas R Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus C Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola Watsonia meriana var. bulbillifera C C Vannum Vannum C Viper's Bugloss P White Crack Willow Salix x rubens R Wild Mignonette Reseda luteola R Watsonia meriana var. bulbillifera					
Thorn Apple (Long-spine) Thorn Apple (Recurved) Datura inoxia P Topped Lavender Lavandula stoechas R Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus C Tutsan Hypericum androsaemum C Viper's Bugloss Echium vulgare Water Hyacinth Eichhornia crassipes Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Wild Mignonette Reseda luteola Wistonia meriana var. bulbillifera C C Vannum Allanthus altissima C C C C C Well Allium vineale R Wild Watsonia Watsonia meriana var. bulbillifera		· · · ·			
Thorn Apple (Recurved) Topped Lavender Lavandula stoechas R Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus C Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale Reseda luteola Wild Teasel Dipsacus fullonum C Variegated Thistle Silybum marianum C C Water Hyacinth Eichhornia crassipes R Wheel Cactus Opuntia robusta P Wild Garlic Allium vineale R Wild Teasel Dipsacus fullonum C Watsonia meriana var. bulbillifera			С		
Tree of Heaven Ailanthus altissima C Tufted Honeyflower Melianthus comosus C Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Watsonia Watsonia meriana var. bulbillifera		Datura inoxia	Р		
Tufted Honeyflower				-	
Tutsan Hypericum androsaemum C Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Wild Watsonia Watsonia reriana var. bulbillifera					
Variegated Thistle Silybum marianum C Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Wild Watsonia Watsonia meriana var. bulbillifera C					
Viper's Bugloss Echium vulgare C Water Hyacinth Eichhornia crassipes S Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Wild Watsonia Watsonia meriana var. bulbillifera C					
Water Hyacinth Eichhornia crassipes S • Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Wild Watsonia Watsonia meriana var. bulbillifera C					
Wheel Cactus Opuntia robusta P White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Wild Watsonia Watsonia meriana var. bulbillifera C			C C		
White Crack Willow Salix x rubens R Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Wild Watsonia Watsonia meriana var. bulbillifera				•	
Wild Garlic Allium vineale R Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Wild Watsonia Watsonia meriana var. bulbillifera C					
Wild Mignonette Reseda luteola R Wild Teasel Dipsacus fullonum C Wild Watsonia Watsonia meriana var. bulbillifera C					
Wild Teasel Dipsacus fullonum C Wild Watsonia Watsonia reriana var. C bulbillifera C		•			
Wild Watsonia Watsonia meriana var. C • bulbillifera					
		Watsonia meriana var.		•	
	Willows**		R	•	•

Locally significant weeds to Cardinia Shire

RP = Regionally Prohibited, RC = Regionally Controlled, WONS = Weeds of National Significance, R = Restricted in the whole of the state.

**Threat ratings (where rated) are derived from the risk rating score in the DELWP Advisory list of environmental weeds in Victoria 2018

Cardinia Shire environmental and declared noxious weed list

Scientific name	Common name	**Threat rating (Low, Medium, Medium High, High, Vory high)	State classifications (where listed in a noxious weed category)
Acacla baileyana	Coolamundra Wattle	MH	
Acacia decurrens	Early Black Wattle		
Acacia elata	Cédar Wattle	н	
Acada floribunda	White Sallow Wattle		
Asacia longifolia	Sallow Wattle	MH.	
Acacia longifolia subp sophorae	Coast Wattle		
Acacia saligna	Golden Wreath Wattle		
Acer pseudo-plantanus	Sycamore Maple	H	
Agapanthus praecox orientalis	Agapanthus / African Lily	н	
Allium triquetrum	Angled Onion	н	R
Alstromerie aurea	Peruvian Lily	н	
Amaryilis belladonna	Belladonna Lily	н	
Annedera conditolia	Madeira vine	н	R
Anthoxanthum odoratum	Sweet Vernal Grass	н	
Arctotheca calendula	Cape Weed	м	
Asparagus asparagoides	Bridal Croeper	H	WONS, R
Asparagus scandens	Asparagus Fern	H	WONS, R
Berberis darwinii	Darwin's Berberry	н	
Briza minor	Shivery Grass	MH	
Briza maxima	Quaking Grass	MH:	
Budoleia variabilis	Butterfly Bush	н	
Calicotome spinosa	Spiny broam	н.	Noxious (RP)

Cardinia Shire Council

Wood Management Strategy 2019-29

Scientific name	Common name	**Threat rating (Low, Medium, Medium High, High, Very high)	State classifications (where listed in a noxious weed category)
Carduus tenutiforus	Slender Thistle		Noxious (RC)
Castanea spp.	Chestnut		
Cestrum elegans	Red Cestrum	VH.	
Chamaecytisus palmensis	Tree Lucerne	VH	
Chrysanthemoides monlifera var monlifera	African Boneseed	н	Naxious (RC), WONS
Chrysanthemum maximum	Shasta Daisy		
Cirsium vuigare	Spear thistle	MH	Noxious (RC)
Clematis vitalba	Old Man's Beard	VH	
Contom maculatum	Hemlock	MH	Noxious (RC)
Conyza bonaniensis	Tall Reabane		
Coprosma repens	Mirror Bush	MC	
Coprosma robusta	Karamu	WH.	
Cordyline australis	Cathage Tree	н	
Cornue capitata	Evergreen Dogwood		
Cortaderia selloana	Pampas Grass	н	
Cotoneaster spp.	Cotoneaster	WH	
Crataegus monogina	Hawthorn	н	Naxious (RC)
Crocosmia x crocosmifolia	Montbretia	VH	
Cytisus palmensis	Tree Lucerne		
Cytisus scoparius	English Broom	н	Naxious (RC)
Cyperus erograstis	Drain Flat Sedge	м	
Delairea odorata	Cape by	391	
Dipagon Agnosus	Common Dipogon (Dolichos Pea)	VH.	
Dodonea viscosa	Sticky Hop Bush	6	
Echlum plantagineum	Patersons Curse	Я	Noxious (RC)
Ehrharta erecta	Panic Veldt Grass	VH	100

Cardinia Shire Council Weed Management Strategy 2019-29

39

Scientific name	Common name	**Threat rating (Low, Medium, Medium High, High, Very high)	State classifications (where listed in a noxious weed category)
Ehrharta longiflora	Annual Veldt grass	301	
Erica baccans	Berry-flower Health	VH	
Erica iusitanica	Spanish Heath	VH.	
Euryops abrotan/fol/us	Euryops	н	
Foerviculum volgane	Fennel	VH	R
Franchus omus	Manna Ash	VH	
Frexinus angustifolie	Desert Ash		
Fraxinus oxycarpa	Caucasian Ash	н	
Gallum aparine	Cleavers	н	
Genista linifolia	Flax Leaf Broom	W.	Noxious (RC)
Genista monspessurana	Cape/Montpellier Broom	VH	Noxious (RC)
Styceria maxima	Red Sweet Grass	VH.	
Hakea salicifolia	Willow Hakea	MH.	
Hakee sauveolens	Sweet Hakea	м	
Hedra helix	English Ivy	MH.	
Holous /anatus	Yorkshire Fag	н	
Hyperloum androsaemum	Tutsan	н	Noxious (RC)
Hypericum perforatum	St.John's Wort	MH	Naxious (RC)
Hypericum tetrapterum	St. Peter's Wort	MH	Naxious (RC)
Vex aguifolium	Holly	301	
lpomoce indica	Blue Morning Glory	н	
Junicus acutus	Spiny Rush	м	Natious (RC)
Lathynus latifolius	Sweet Pea	L	
Leptospermum laevigatum	Coast Tea Tree	WH	
Leycesteria Formosa	Himilayan Honeysuckle	VH	
Ligivetrum vulgare	European Privet	WH	
Lonicora japonica	Japanese Honeysuckle	VH	

Cardinia Shire Council Weed Management Strategy 2019-29

Scientific name	Common name	**Threat rating (Low, Medium, Medium High, High, Very high)	State classifications (where listed in a noxious weed category)
Lyclum ferocissimum	African Boxthorn	501	Naxious (RC)
Marrubrium vulgare	Horehound	н	Naxious (RC)
Melaleuca armillaris	Giant Honey Myrtle	VH	
Melaleuca hypericifolia	Honey Myrtle	н	
Morana fiaccida	Cape Tulip	MH	Noxious (RC)
Myosotis sylvatica	Common Forget-me-not	м	
Nassella trichotoma	Serrated Tussock	VH	Naxious (RC)
Cenotitera stricta	Common Evening Primrose	МН	
Opuntia aurantiaca	Prickly Pear	VH	
Oxalls pes-caprae	Soursob	VH.	R
Portulace dieracea	Common Purstane		
Paraserianthia lopantha	Cape Wattle		
Fassifiora sp. aff. molfasima	Banana Passionfruit	VH.	
Pentagliott/s serpvirens	Alkanet		
Phalaris aquatica	Toowoomba Canary Grass	L .	
Phytolaosa octandra	Red Inkweed	н	
Pinus radiata	Monterey/Radiata Pine	VH	
Рітоврочит ставзітолит	Karo		
Pittosporum undulatum	Sweet Pittosporum	391	
Polygala myrtifolia	Myrtle Leaf Milkwort	VH	
Populus tremuloides	American Aspen	н	
Prunus cerasifera	Cherry Plum	м	
Prunus laurocerasus	Cherry Laurel	н	
Prunus Iusitanica	Portugal Laurel	VH	
Psoralea pinnata	Plnnate Scurf-Pea	н	
Pyracantha spp.	Firethorns	VH.	
Quercus robur **	Oak		

Cardinia Shire Council Weed Management Strategy 2019-29

Scientific name	Common name	**Threat rating (Low, Medium, Medium High, High, Very high)	State classifications (where listed in a noxious weed category)
Ranunculus repens	Creeping Buttercup	391	
Rhammus ataternus	Italian Buckthom		
Ricinus communis	Castor Oil Plant	м	
Robinia pseudacacia	Black Locust Tree	н	
Romulea rosea var australis	Onion Grass	M	
Rose rubiginose	Sweet Briar	H	Naxious (RC)
Rubus fruticosus spp. agr.	Blackberry	VH	Naxious (RC), WONS
Sartx pubyronica	Weeping Willow		
Sarix cinerea	Willow	VH.	WONS, R
Salpichroa origanifolia	Pampas Lily of the Valley	MH	Noxious (RC)
Senecio madagascariensis	African Firewood	WH.	R
Senecio Jacobaea	Ragwort	мн	Noxious (RC)
Solanum elaeagnifolium	Silverleaf Nightshade	мн	Noxious (RP)
Solanum ilnnaeanum	Apple of Sodom	MH	Naxious (RC)
Solanum mauritianum	Tree Tobacco	мн	
Solanum nighum	Black Nightshade	м	
Solanum pseudocapsicum	Madeira Winter Cherry	н	
Sollya heterophylla	Blue-bell Creeper	391	
Spartina anglica	Common Cord-grass		
Tradescantia fluminensis	Wandering Tradescantia	WH	
Trapacolum majus	Nasturtium	м	
Mex europaeus	Gorse	н	Naxious (RC), WONS
LAwus procera	English Elm	н	
Verbascum thapsus	Great Mullein	м	
Whemum timus	Laurestinus	6	
Vince major	Blue Periwinkle	н	

Cardinia Shire Council Weed Management Strategy 2019-29

Scientific name	Common name	**Threat rating (Low, Medium, Medium High, High, Very high)	State classifications (where listed in a noxious weed category)
Wola odoraća	Fragrant Violet	н	
Viola riviniana	Wood Violet		
Watsonia borbonica	Rosy Watsonia		
Watsonia meriana var. bubilifera	Bulbil Watsonia	VH	Naxious (RC)
Willow spp	Willows	ME	
Xanthium apinosum	Bathurst Burr	м	Naxious (RC)
Zantedeschia aethiopica	White Arum Lily	WH	

Cardinia Shire Council

Weed Management Strategy 2019-29

Appendix C: EVC Lists

Description:

Eucalypt forest to 25 m tail on relatively fertile, moderately well-drained soils in areas of relatively high rainfall. Characterised by the diversity of life forms and species in the understorey including a range of shrubs, grasses and herbs.

Large trees:

Species DBH(cm) #/hs Excelopator sep. 70 on 20 / ha

Tree Canopy Cover:

 Viscover
 Character Species
 Common Name

 30%
 Excellenter oblique Excellenter and late at 2. Excellenter at 2. E

Understorey:

Understorey.			
Life form	#Spp	%Cover	LF code
Irrenature Canopy Tree		5%	IT
Understorey Tree or Large Shrub	2	10%	T
Medium Shrub	. 9	30%	MS
Small Shrub	3	5%	55
Prostrate Shrub	- 2	156	PS.
Large Herb	2	176	134
Medium Herb	- 5	10%	MH
Small or Prostrate Herb	2	1%	54
Large Tufted Graminoid	2	5%	LTG
Large Non-tufted Grammold	2	10%	LNG
Medium to Small Tufted Graminoid	- 4	\$ 0%	MTG
Medium to Tirry Non-tuffed Graminoid	- 3	156	MNG
Ground Fern	2	10%	GF
Scrambler or Climber	2	1%	SC
Bryophytes/Lichens	no	10%	DL.

		*** Transfer (1888)
LF Code	Species typical of at least part of EVC range	Common Name
MS	Epiecrio impressa	Consmon Heath
M5	Laptaspermum andinentale	Prickly Tea-tree
M5	Autoraca gunnii	Golden Bush-pea
MS	Acacie inucronata ssp. longifolia	Narrow-leaf Wattie
SS	Ansperas xiphoctada sar. xiphoclada	Broom Spurge
55	Lavratia Alcifolia	Holly Lomatia
PS.	Acrotriche prostrata	Training Ground-barry
MH	Gonocarpos tetragyrus	Common Raspwort
MH	Viola traplaracus varous Willia (1972)	Ivy-leaf Violet
SH	Goodenia lanata	Trailing Goodenia
LTG	Xanthornhoea minor ssp. lutea	Small Grass-tree
LTG	Lomandra longiforia	Spiny-headed Mat-rush
LNG	Gatinia radula	Thatch Saw-sedge
LNG	Tetrarrhena juncea	Forest Wire-grass
MTG	Joycea palicia	Silvertop Wailaby-grass
MTG	Ana austrade spe. agg.	Tussock Grass
MTG	Lamendra fibformia	Wattle Mat-rush
MTG	Liquidospurmus laturalis	Variable Sword-sedge
MTG	Dignella revoluta s.l.	Black-enther Flax-lik
MNG	Alcrolaena stipololes var. stipoldes	Weeping Grass
GF	Ptenidum esculentum	Austral Bracken
GF	Lindsona finantis	Screw Forn
SC	Billardiana scandons	Common Apple-berry

Ecological Vegetation Class Storegion benchmark

EVC 16: Lowland Forest Highlands - Southern Fall bioregion

Recruitment:

Continuous.

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of the document is strictly promoted

Organic Litters 40 % cover

Logs: 20 m/0.1 ha

Weediness

LF Code MH

Typical Weed Species Hypochoen's radicate

Common Name Cat's Ear

Invasive high

Impact law

Published by the Victorian Commissed Department of Instantability and Revisionance April 2009.

III The State of Victoria Department of Subsmobility and Brykrament 2004

is The Sales of Inter's Outperfeath of Socialistics and the making analyside of this surject for personal, in-foliose is non-connected purposes is authorized, on condition that:

- The copyright devel is also investigated.

- The copyright connection is deleted.

- The first interestion is deleted.

- The making is made available without thange or at cost; and

- The making is made available without thange or at cost; and

- The making is made available without thange or at cost; and

- The making is not under the machine in increasing or decopility is entired.

Requests for permission to reproduce or permutation the making in or permutation to the first cost of the Copyright Act (1965) dreads be directed to the ferminated Officer; copyright, 6 Horizona Street, East Moleculars. 1965.

Per more information contract: Customer Service Control, 1.78-198

This publication was be of contact our to not but the Subs of Widers and to envisore do not a parameter that the publication is without flav of one find to Wides approximate for your particular purposes and Secretors obstance at Salesto for one envisor, become strong encountered into particular your report on any information or this publication.

www.dse.vic.gov.au

Cardinia Shire Council Zone 4 - Heathy woodland complex

Trees

- Acacia dealbata|Silver Wattle
- Acacia implexa|Lightwood, Hickory Wattle
- Acacia mearnsii|Black Wattle
- Acacia melanoxylon|Blackwood
- Allocasuarina littoralis|Black Sheoak
- Eucalyptus baxteri|Brown Stringybark
- Eucalyptus cephalocarpa|Silver-leaf or Mealy Stringybark
- Eucalyptus cypellocarpa|Mountain Grey Gum
- Eucalyptus dives|Broad-leaf Peppermint
- Eucalyptus fulgens|Green Scentbark
- Eucalyptus goniocalyx|Long-leaf Box, Bundy
- Eucalyptus obliqua|Messmate
- Eucalyptus ovata var. ovata|Swamp Gum
- Eucalyptus radiata ssp. radiata|Narrow-leaf Peppermint
- Eucalyptus viminalis ssp. viminalis Manna or Ribbon Gum
- Eucalyptus viminalis subsp. Pryoriana|Gippsland Manna Gum
- Hedycarya angustifolia|Austral or Native Mulberry, Djelwuck
- Pittosporum bicolor|Banyalla
- Pomaderris aspera|Hazel Pomaderris
- Prostanthera lasianthos var. lasianthos|Victorian Christmas Bush
- Rapanea howittiana|Muttonwood

Shrubs

- Acacia brownii|Heath Wattle
- Acacia genistifolia|Spreading Wattle
- Acacia myrtifolia|Myrtle Wattle
- Acacia oxycedrus|Spike Wattle
- Acacia paradoxa|Hedge Wattle, Kangaroo Thorn
- Acacia stricta|Hop Wattle
- Acacia suaveolens|Sweet Wattle
- Acacia verticillata|Prickly Moses
- Allocasuarina paludosa|Scrub or Swamp Sheoak
- Amperea xiphoclada Broom Spurge
- Banksia marginata|Silver Banksia, Warrock
- Banksia spinulosa var. cunninghammii|Hairpin Banksia
- Bauera rubioides|Wiry Bauera, River or Dog Rose
- Bedfordia arborescens|Blanket-leaf
- Bossiaea cinerea|Showy Bossiaea
- Bursaria spinosa ssp. spinosa|Sweet Bursaria, Kurwan, Tupy
- Cassinia aculeata|Common Cassinia
- Cassinia arcuata Drooping Cassinia, Chinese Scrub
- Coprosma quadrifida|Prickly Currant-bush
- Correa reflexa var. reflexa|Common Correa, Native Fuchsia
- <u>Daviesia latifolia|Hop Bitter-pea</u>
- <u>Dillwynia glaberrima|Smooth or Heath Parrot-pea</u>
- Dodonaea viscosa susp.spatulata|Sticky Hop-bush

- Epacris impressa Common Heath
- Gompholobium huegelii|Common Wedge-pea, Karalla
- Goodenia ovata|Hop Goodenia
- Goodia lotifolia var. pubescens|Golden Tip
- Hakea decurrens Bushy Needlewood
- Hakea nodosa|Yellow Hakea
- Hakea ulicina|Furze Hakea
- Hibbertia riparia|Erect Guinea-flower
- Indigofera australis|Austral Indigo
- Kunzea ericoides|Burgan
- Leptospermum continentale|Prickly Tea-tree
- Leptospermum lanigerum|Woolly Tea-tree
- <u>Leptospermum myrsinoides|Heath or Silky Tea-tree</u>
- Lomatia myricoides River or Long-leaf Lomatia
- Melaleuca ericifolia|Swamp Paperbark
- Melaleuca squarrosa|Scented Paperbark
- Olearia argophylla|Musk Daisy-bush
- Olearia lirata|Snowy Daisy-bush
- Olearia ramulosa var. ramulosa|Twiggy Daisy-bush
- Ozothamnus ferrugineus|Tree Everlasting
- Pimelea axiflora ssp. axiflora Bootlace Bush
- Pimelea humilis|Common Rice-flower
- Platylobium formosum|Handsome Flat-pea
- Polyscias sambucifolia ssp. 3|Elderberry Panax
- Pultenaea gunnii ssp. gunnii Golden Bush-pea
- Pultenaea hispidula|Rusty Bush-pea
- Pultenaea scabra|Rough Bush-pea
- Solanum laciniatum|Large Kangaroo-apple
- Spyridium parvifolium Dusty Miller
- Tetratheca ciliata|Pink-bells
- Viminaria juncea|Native Broom, Golden Spray

Grasses, sedges and rushes

- Amphibromus nervosus|Common Swamp Wallaby-grass
- Austrodanthonia geniculata|Kneed Wallaby-grass
- Austrodanthonia setacea|Small-flowered or Bristly Wallaby-grass
- Baloskion tetraphyllum ssp. tetraphyllum Tassel Cord-rush
- <u>Carex appressa|Tall Sedge</u>
- Eleocharis acuta|Common Spike-rush
- Eleocharis sphacelata|Tall Spike-rush
- Ficinia nodosa|Knobby Club-sedge
- Gahnia sieberiana Red-fruit Saw-sedge
- Juncus pallidus|Pale Rush
- Lomandra filiformis ssp. coriacea|Wattle Mat-rush
- Lomandra longifolia subsp. longifolia|Spiny-headed Mat-rush, Karawun
- Microlaena stipoides var. stipoides Weeping Grass
- Poa ensiformis|Purple-sheath or Sword Tussock-grass
- Poa labillardierei var. labillardierei Common Tussock-grass
- Poa morrisii|Velvet Tussock-grass
- Poa sieberiana var. sieberiana Grey Tussock Grass
- Themeda triandra|Kangaroo Grass

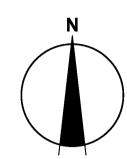
• Xanthorrhoea minor ssp. lutea|Small Grass-tree, Toolimerin

Climbers

- Billardiera scandens var. scandens|Common Apple-berry, Apple Dumpling
- Clematis aristata|Mountain or Austral Clematis, Old Man's Beard
- Clematis microphylla|Small-leaved Clematis, Kenam
- Comesperma volubile|Love Creeper
- Glycine clandestina|Twining Glycine
- Hardenbergia violacea|Purple Coral-pea
- Pandorea pandorana|Wonga Vine
- Rubus parvifolius|Small-leaf Bramble, Native Raspberry

Ferns

• Adiantum aethiopicum Common Maidenhair


Ground covers and climbers

- Acaena novae-zelandiae|Bidgee-widgee
- Ajuga australis|Austral Bugle
- Arthropodium strictum|Chocolate Lily
- Brachyscome multifida|Cut-leaf Daisy
- Brunonia australis|Blue Pincushion
- Bulbine bulbosa|Bulbine Lily
- Burchardia umbellata|Milkmaids
- <u>Dianella longif</u>olia var. longifolia|Pale Flax-lilv
- Dianella revoluta|Black-anther or Spreading Flax-lily
- Dianella tasmanica|Tasman Flax-lily
- Dichondra repens Kidney-weed
- Diplarrena moraea Butterfly Flag
- Geranium solanderi|Austral Crane's-bill
- Helichrysum scorpioides|Button Everlasting
- Hovea linearis|Common Hovea
- Kennedia prostrata|Running Postman
- Lythrum hyssopifolia|Lesser or Small Loosestrife
- Patersonia occidentalis|Long Purple-flag
- Platylobium obtusangulum Common Flat-pea
- Stackhousia monogyna|Creamy Stackhousia
- Stylidium armeria|Grass Trigger-plant
- Thelymitra media|Tall Sun-orchid
- Thysanotus tuberosus ssp. tuberosus Common Fringe-lily
- Viola hederacea|Ivy-leaf or Native Violet
- Wahlenbergia stricta|Tall Bluebell
- Wurmbea dioica ssp. dioica Early Nancy

https://www.cardinia.vic.gov.au/directory/9/cardinia_indigenous_plant_guide/category/40

8 WATTLETREE ROAD, BUNYIP

FUNCTIONAL LAYOUT PLAN - ALL STAGES CARDINIA SHIRE COUNCIL

LOCALITY PLAN
VIC ROADS REF: 718 F10

Drawing Index

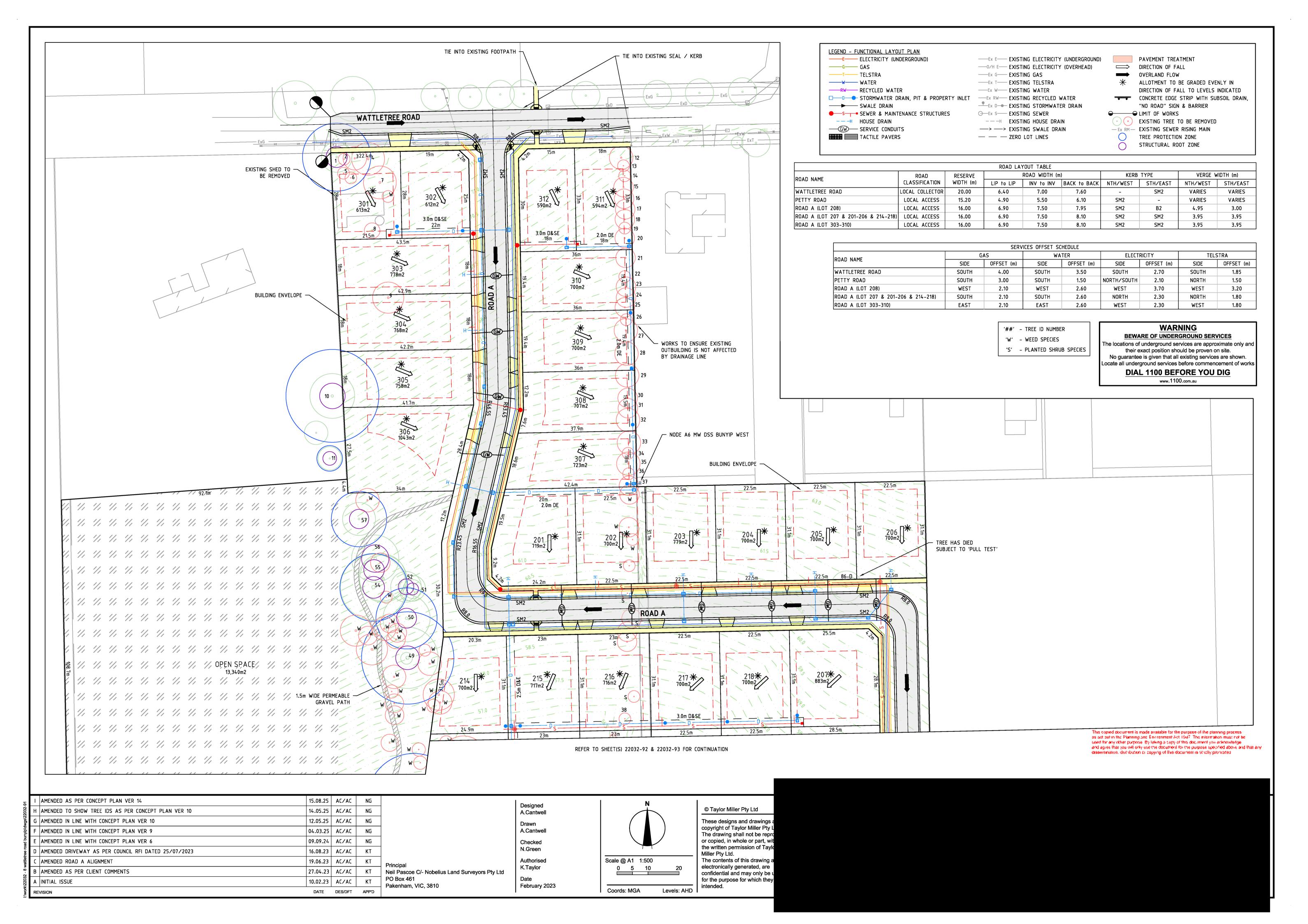
22032-90 LOCALITY PLAN

22032-91 LAYOUT PLAN - SHEET 1 OF 2

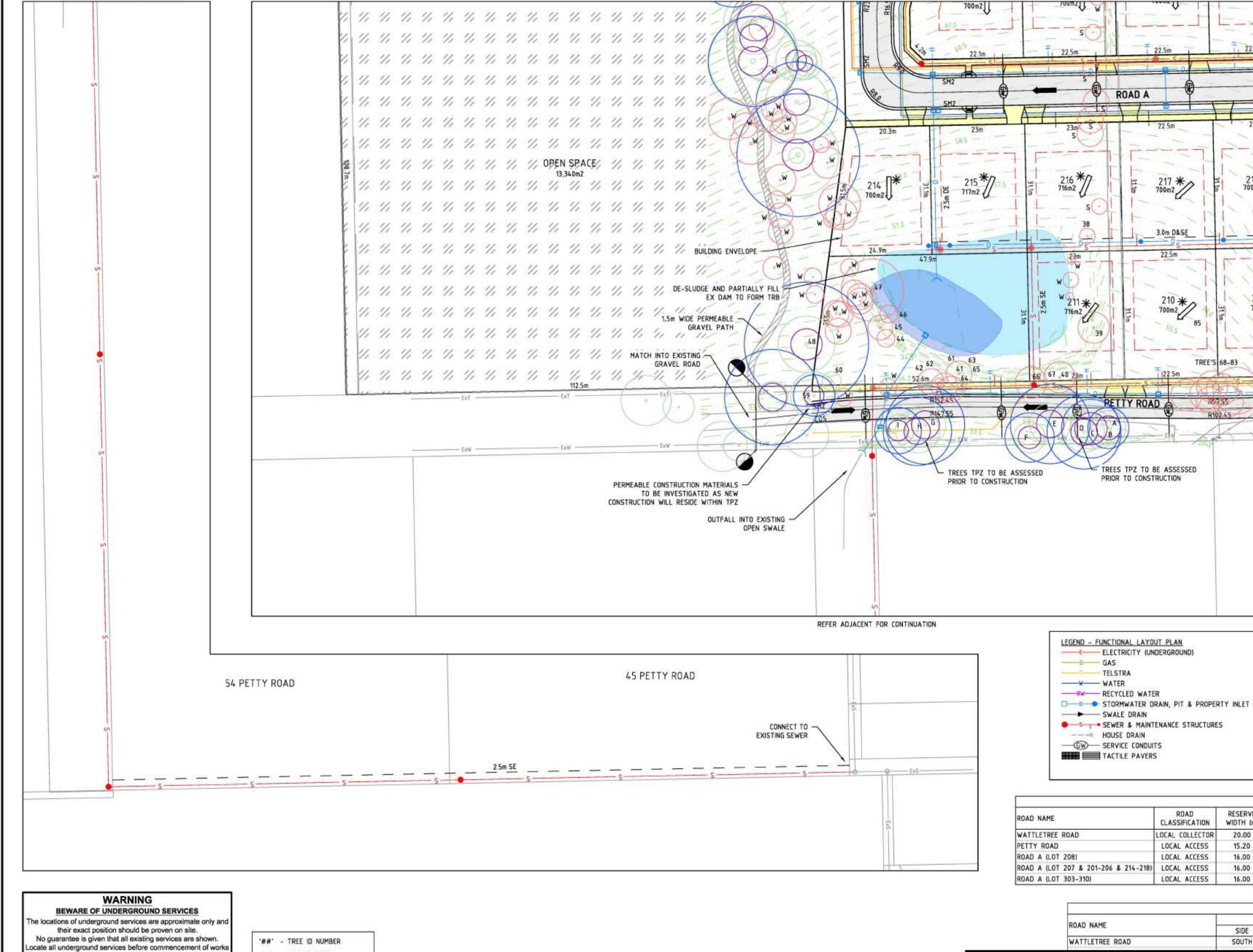
22032-92 INTERIM LAYOUT PLAN - SHEET 2 OF 2

22032-93 ULTIMATE LAYOUT PLAN - SHEET 2 OF 2

22032-95 SWEPT PATH DIAGRAMS


22032-94 TYPICAL CROSS SECTIONS

Principal


Neil Pascoe C/- Nobelius Land Surveyors Pty
PO Box 461
Pakenham, VIC, 3810

Engineering Design | Development Coordination | Construction Management

MATCH INTO EXISTING -GRAVEL ROAD

Designed

Drawn

A.Cantwell

A.Cantwell

Checked

N.Green

Authorised

February 2023

K.Taylor

Date

Neil Pascoe C/- Nobelius Land Surveyors Pty Ltd

PO Box 461

Pakenham, VIC, 3810

"W" - WEED SPECIES

'S' - PLANTED SHRUB SPECIES

15.08.25 AC/AC NG

14.05.25 AC/AC NG

12.05.25 AC/AC NG

04.03.25 AC/AC NG

09.09.24 AC/AC NG

16.08.23 AC/AC KT

19.06.23 AC/AC KT

27.04.23 AC/AC KT

10.02.23 AC/AC KT

DATE DES/DFT APP'D

DIAL 1100 BEFORE YOU DIG

www.1100.com.au

AMENDED TO SHOW TREE IDS AS PER CONCEPT PLAN VER 10

D AMENDED DRIVEWAY AS PER COUNCIL RFI DATED 25/07/2023

AMENDED AS PER CONCEPT PLAN VER 14

AMENDED IN LINE WITH CONCEPT PLAN VER 10

F AMENDED IN LINE WITH CONCEPT PLAN VER 9

AMENDED IN LINE WITH CONCEPT PLAN VER 6

AMENDED ROAD A ALIGNMENT

A INITIAL ISSUE

REVISION

B AMENDED AS PER CLIENT COMMENTS

REFER TO SHEET 22032-91 FOR CONTINUATION

@ Taylor Miller Pty I

These designs and d

copyright of Taylor Mi

The drawing shall not or copied, in whole or

the written permission

The contents of this d

electronically generat

confidential and may

for the purpose for wh

Miller Pty Ltd.

intended.

Levels: AHD

Scale @ A1 1:500

Coords: MGA

ROAD A

3.0m D&SE

22.5m

TREES TPZ TO BE ASSESSED

PRIOR TO CONSTRUCTION

22.5m

REFER ADJACENT FOR CONTINUATION

— GW — SERVICE CONDUITS ---> ---> EXISTING SWALE DRAIN -EX RM- EXISTING SEWER RISING MAIN TACTILE PAVERS — — ZERO LOT LINES TREE PROTECTION ZONE 0 STRUCTURAL ROOT ZONE ROAD LAYOUT TABLE ROAD WIDTH (m) KERB TYPE VERGE WIDTH (m) RESERVE ROAD CLASSIFICATION WIDTH (m) LIP to LIP INV to INV BACK to BACK NTH/WEST STH/EAST NTH/WEST STH/EAST LOCAL COLLECTOR 20.00 7.00 7.60 VARIES VARIES 6.40 SM2 15.20 4.90 5.50 6.10 SM2 VARIES VARIES LOCAL ACCESS 7.50 7.95 SM2 3.00 LOCAL ACCESS 16.00 6.90 BZ 4.95 ROAD A (LOT 207 & 201-206 & 214-218) LOCAL ACCESS 6.90 7.50 8.10 3.95 16.00 SM2 SM2 3.95 ROAD A (LOT 303-310) LOCAL ACCESS 16.00 6.90 7.50 8.10 SM2 SM2 3.95 3.95

-----EX E---- EXISTING ELECTRICITY (UNDERGROUND)

- O/H E EXISTING ELECTRICITY (OVERHEAD)

----Ex G----- EXISTING GAS

---Ex T--- EXISTING TELSTRA

EX W EXISTING WATER

⊕—Ex S—— EXISTING SEWER

-Ex RW EXISTING RECYCLED WATER

--- EXISTING HOUSE DRAIN

EX D- EXISTING STORMWATER DRAIN

		SERVI	CES OFFSET S	CHEDULE				
ROAD NAME	GAS		WATER		ELECTRICITY		TELSTRA	
	SIDE	OFFSET (m)	SIDE	OFFSET (m)	SIDE	OFFSET (m)	SIDE	OFFSET (m)
WATTLETREE ROAD	SOUTH	4.00	SOUTH	3.50	SOUTH	2.70	SOUTH	1.85

28.5m

ROAD TIE IN SUBJECT TO CONFIRMATION OF -

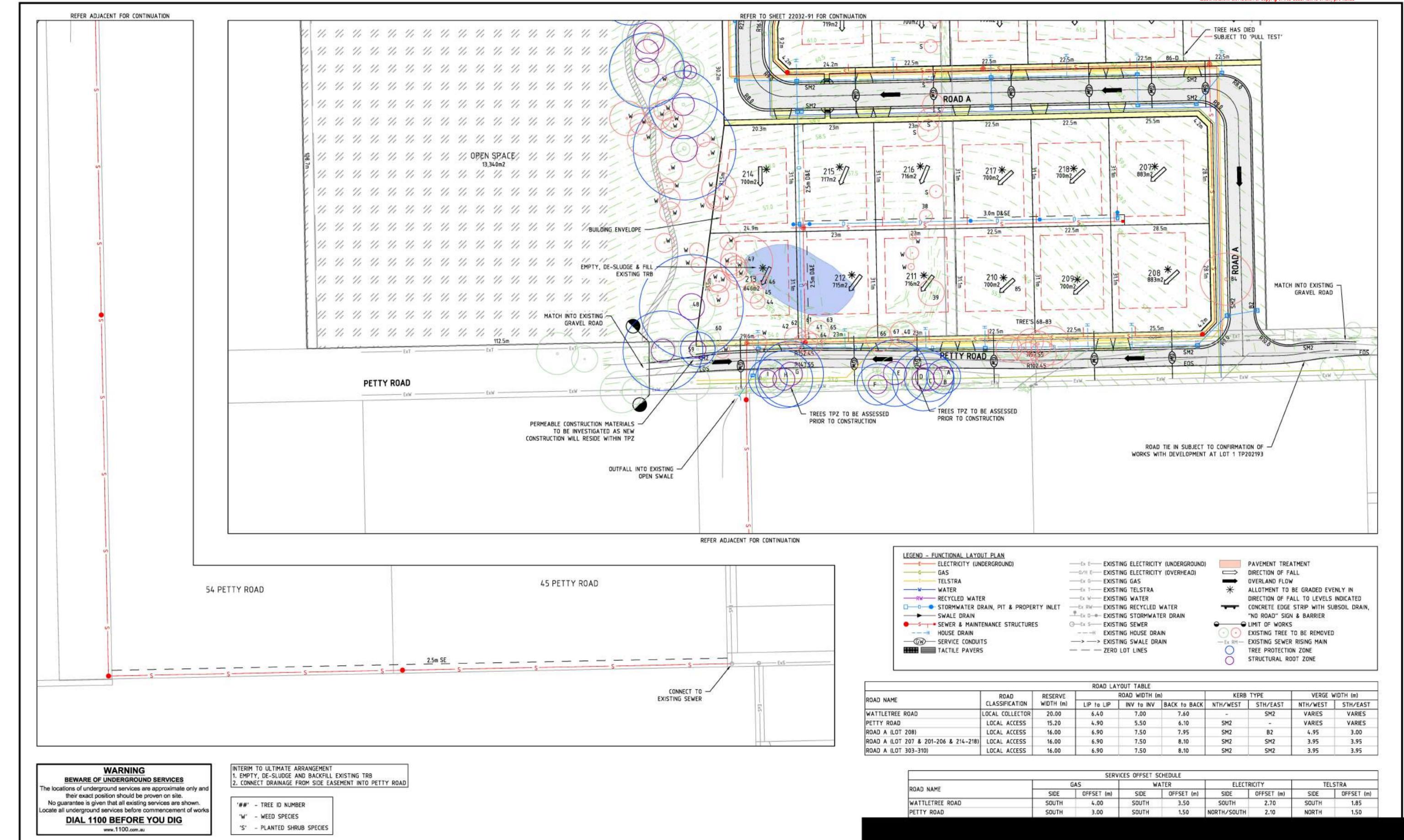
PAVEMENT TREATMENT

OVERLAND FLOW

ALLOTMENT TO BE GRADED EVENLY IN

CONCRETE EDGE STRIP WITH SUBSOIL DRAIN.

"NO ROAD" SIGN & BARRIER


EXISTING TREE TO BE REMOVED

DIRECTION OF FALL TO LEVELS INDICATED

DIRECTION OF FALL

→ LIMIT OF WORKS

WORKS WITH DEVELOPMENT AT LOT 1 TP202193

© Taylor Miller Pty Ltd

Miller Pty Ltd.

intended.

Levels: AHD

Scale @ A1 1:500

Coords: MGA

These designs and drawings are the

copyright of Taylor Miller Pty Ltd.

The drawing shall not be reproduce or copied, in whole or part, without

the written permission of Taylor

The contents of this drawing are

confidential and may only be used

for the purpose for which they are

electronically generated, are

AMENDED AS PER CONCEPT PLAN VER 14

AMENDED IN LINE WITH CONCEPT PLAN VER 10

F AMENDED IN LINE WITH CONCEPT PLAN VER 9

AMENDED IN LINE WITH CONCEPT PLAN VER 6

AMENDED ROAD A ALIGNMENT

A INITIAL ISSUE

REVISION

B AMENDED AS PER CLIENT COMMENTS

AMENDED TO SHOW TREE IDS AS PER CONCEPT PLAN VER 10

D AMENDED DRIVEWAY AS PER COUNCIL RFI DATED 25/07/2023

15.08.25 AC/AC NG

14.05.25 AC/AC NG

12.05.25 AC/AC NG

04.03.25 AC/AC NG

16.08.23 AC/AC KT

19.06.23 AC/AC KT

27.04.23 AC/AC KT

10.02.23 AC/AC KT

DATE DES/DFT APP'D

09.09.24 AC/AC

Designed

Drawn

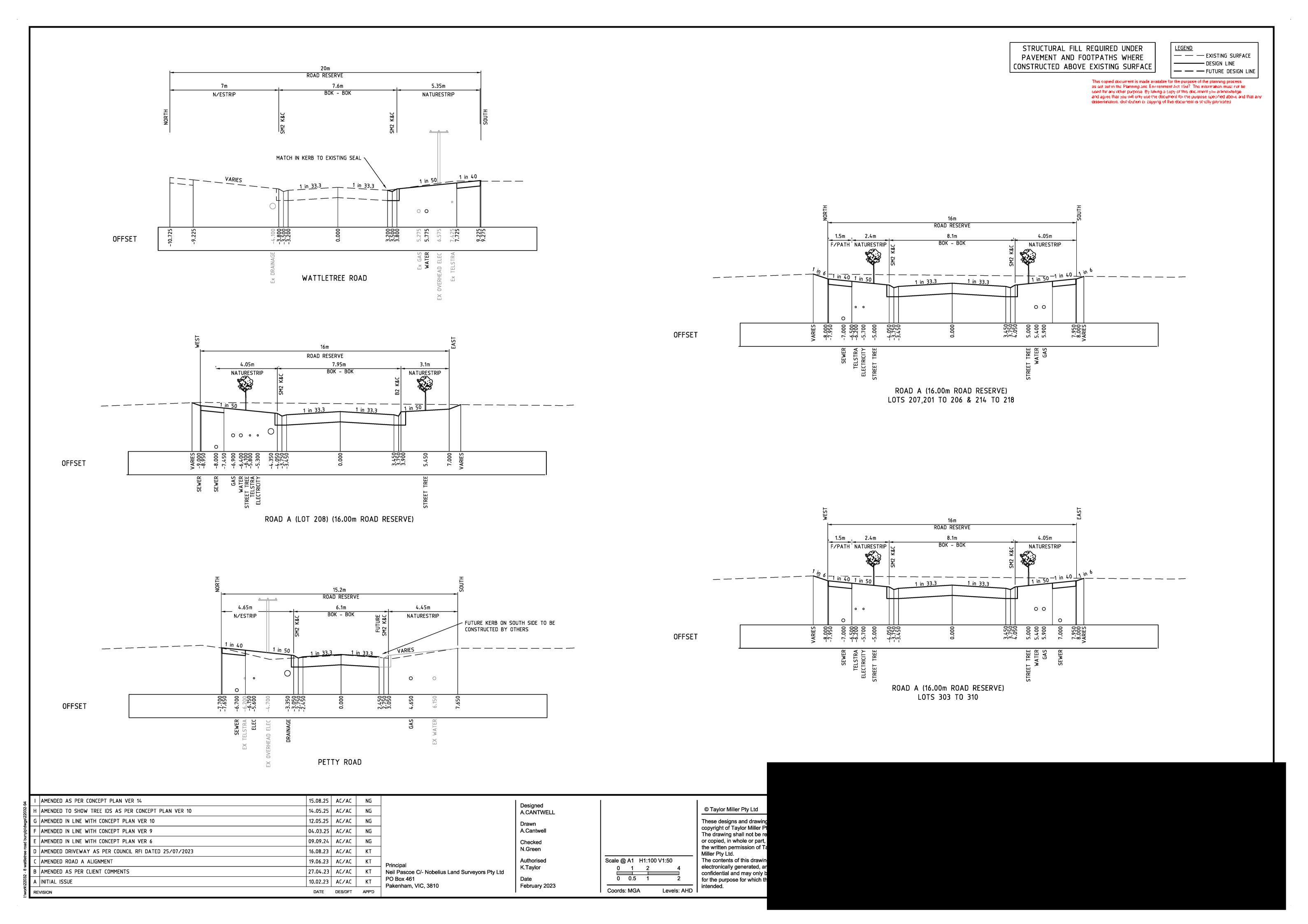
A.Cantwell

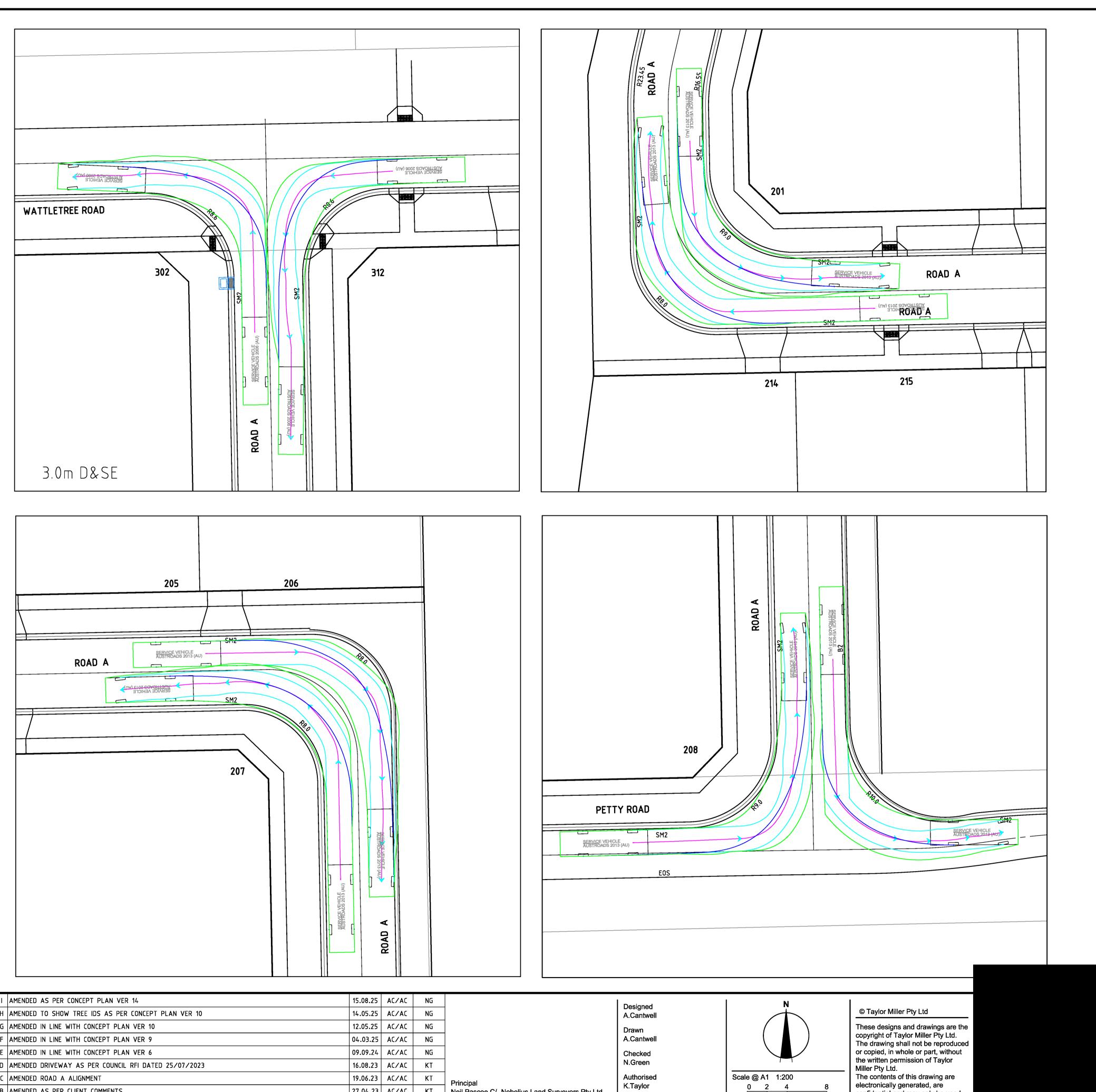
A.Cantwell

Checked

N.Green

Authorised


February 2023


K.Taylor

Neil Pascoe C/- Nobelius Land Surveyors Pty Ltd

PO Box 461

Pakenham, VIC, 3810

27.04.23 AC/AC KT Neil Pascoe C/- Nobelius Land Surveyors Pty Ltd

Pakenham, VIC, 3810

February 2023

Coords: MGA

PO Box 461

10.02.23 AC/AC KT

DATE DES/DFT APP'D

B AMENDED AS PER CLIENT COMMENTS

A INITIAL ISSUE

This copied document is made available for the purpose of the planning process. as set out in the Planning and Environment Act 1947. The information must not be used for any other purpose. By laking a copy of this document you arknowledge and agree that you will only use the document for the purpose specified above and that any dissemination, distribution or copying of this document is strictly promoted.

WARNING **BEWARE OF UNDERGROUND SERVICES**

The locations of underground services are approximate only and their exact position should be proven on site. No guarantee is given that all existing services are shown. Locate all underground services before commencement of works **DIAL 1100 BEFORE YOU DIG**

www.1100.com.au

VEHICLE BODY FRONT WHEELS REAR WHEELS TRAVEL PATH

8.80 1.50 5.00 SERVICE VEHICLE

Width : 2.50
Track : 2.50
Lock to Lock Time : 6.0 s
Steering Angle : 38.7 deg

← LIMIT OF WORKS EXISTING TREE TO BE REMOVED PERMANENT SURVEY MARK

"NO ROAD" SIGN & BARRIER

CONCRETE EDGE STRIP WITH SUBSOIL DRAIN,

STORMWATER DRAIN, PIT & PROPERTY INLET

● S SEWER & MAINTENANCE STRUCTURES

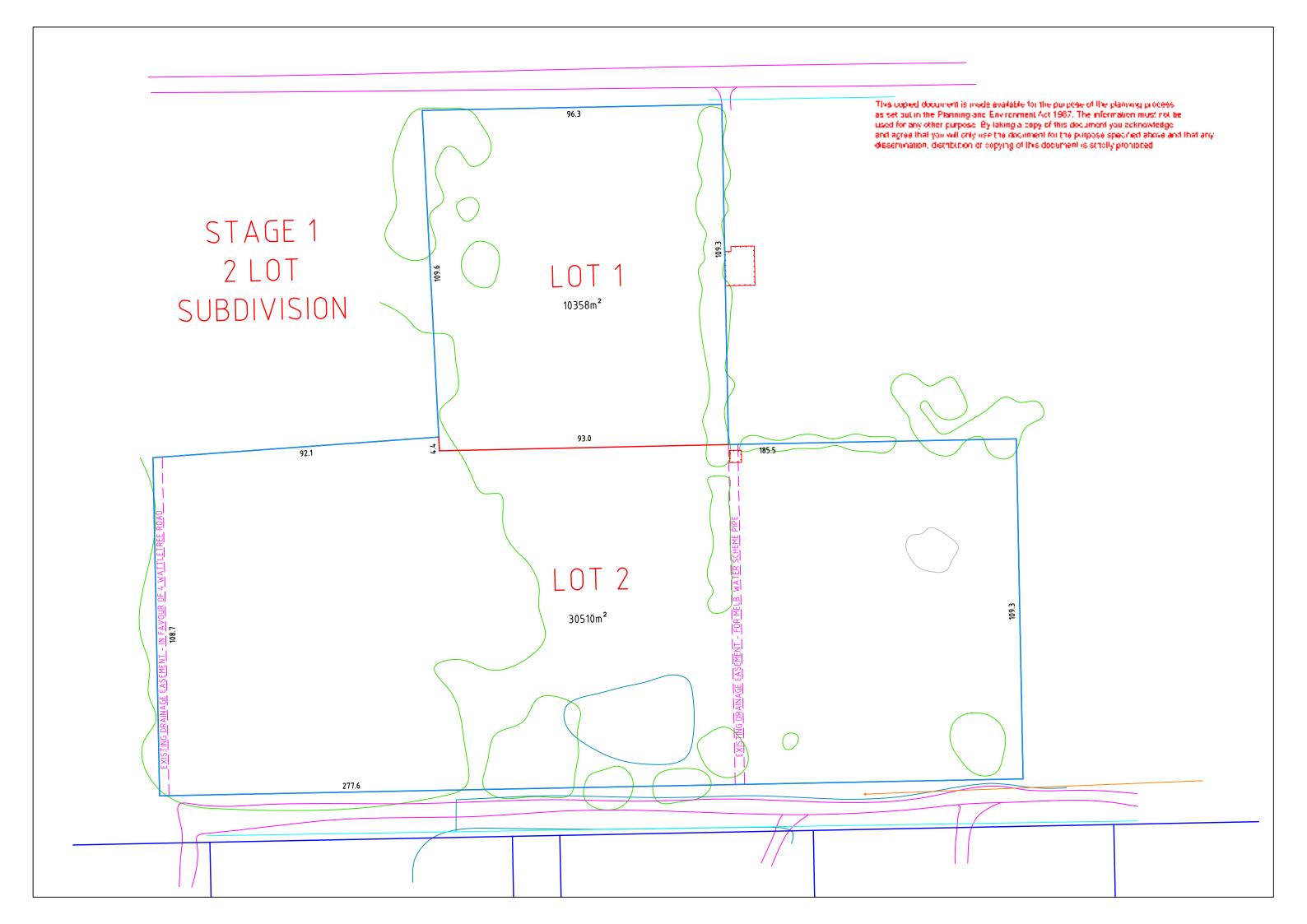
TEMPORARY BENCH MARK

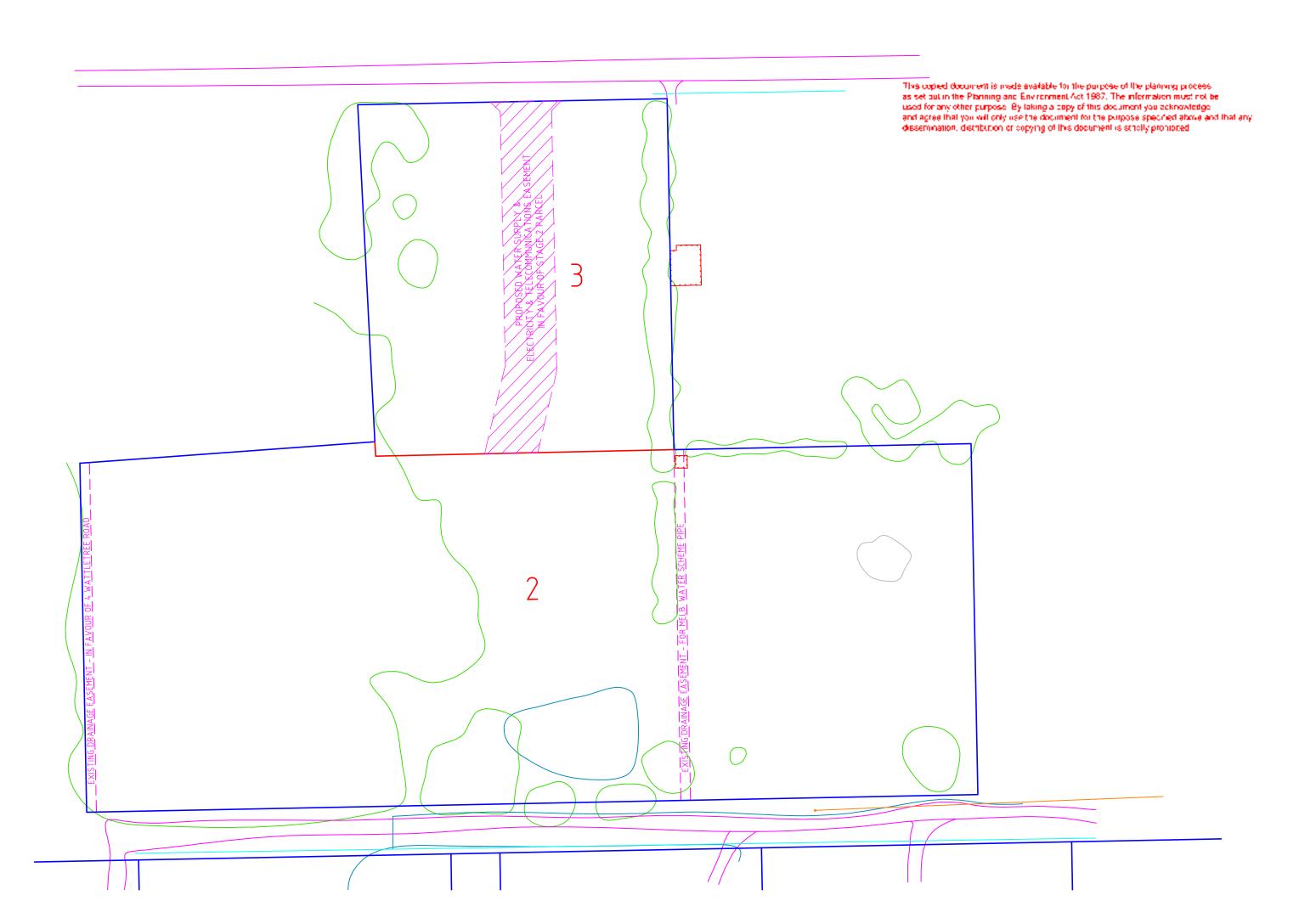
<u>LEGEND - INTERSECTION PLAN</u>

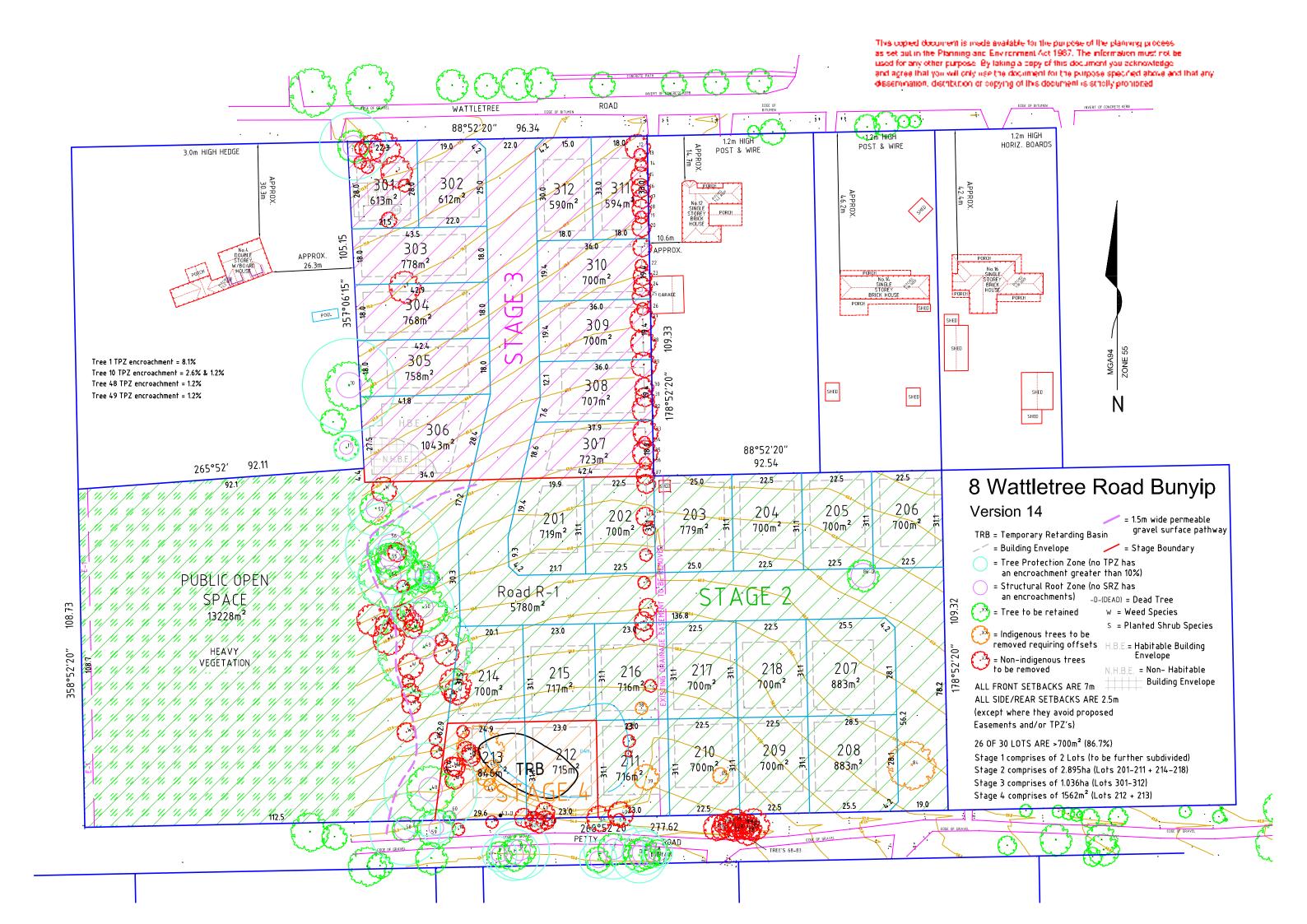
──────────── SWALE DRAIN

---H HOUSE DRAIN

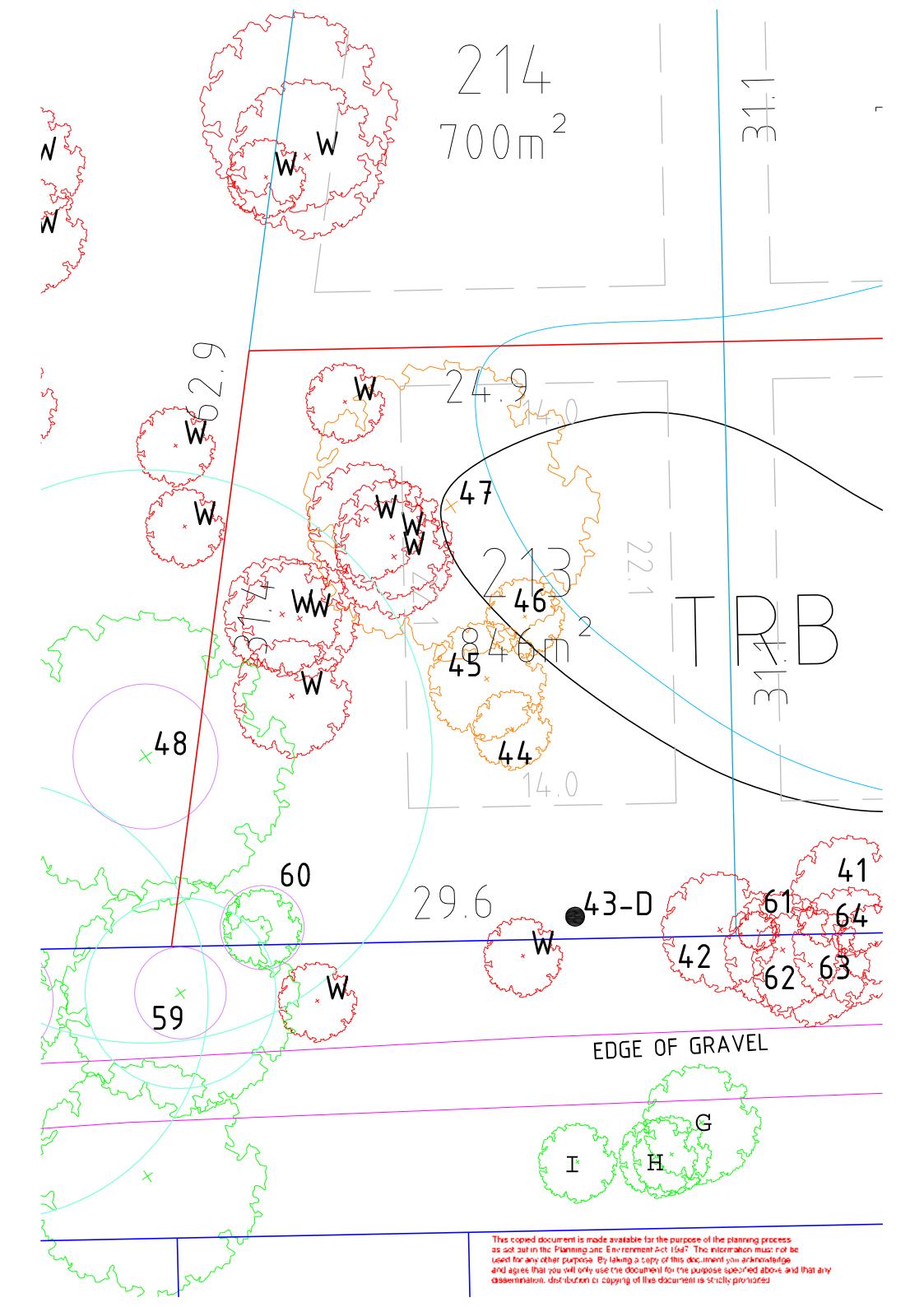
TACTILE PAVERS


RETAINING WALL


− − −H EXISTING HOUSE DRAIN


PAVEMENT TREATMENT

PROPOSED DRIVEWAY


electronically generated, are confidential and may only be used for the purpose for which they are intended. Levels: AHD

Road R-1

