

Appendix B Hydrologic Modelling and Design

The RORB Runoff Routing Program – version 6.45, developed at Monash University by E. M. Laurenson and R. G. Mein, has been used to determine the design flows originating from the catchment. RORB is a general runoff and stream flow routing program used to calculate flood hydrographs from rainfall and other channel inputs. It subtracts losses from rainfall to produce rainfall excess and routes this through catchment storage to produce the hydrograph.

Generally, the models utilised are as per the 2018 Wetland Design Report, and have only been updated herein to reflect the current Subject Land Proposals. Hence, showing that the 2018 Wetland Design Report's findings are still valid.

B.1 Pre-development

B.1.1 Model Description

Pre-development conditions are taken as prior to the adjacent McDonalds Track residential development occurring.

Figure C.1 details the RORB model for the pre-development conditions model and Tables C.1 and C.2 detail the tabulation of the RORB model setup (i.e. catchment area, fraction impervious, reach lengths, etc). This catchment is based on existing site survey provided by the client and LiDAR information. The model setup only considers the developable area of the catchment and produces a representative hydrograph from the developable part of the catchment into Adams Creek, and towards Westernport Road.

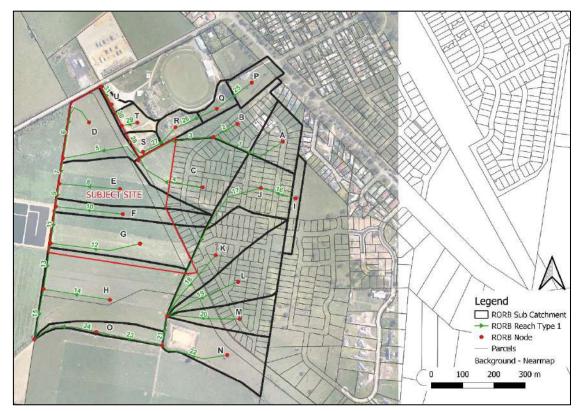


Figure B.1 Pre-development RORB model

Appendix B – Hydrologic Modelling and Design

RORB Sub-Catchment

Table B.1

Details						
Sub Area	Area (ha)	Area (km²)	Fimp			
А	2.2	0.022	0.05			
В	2.8 0.028		0.05			
С	5.5	0.055	0.00			
D	3.6	0.036	0.00			
E	4.6	0.046	0.00			
F	2.1	0.021	0.00			
G	5.8	0.058	0.00			
Н	9.3	0.093	0.00			
I	0.9	0.009	0.65			
J	3.5	0.035	0.00			
К	3.9	0.039	0.00			
L	4.3	0.043	0.00			
М	2.4	0.024	0.00			
Ν	4.5	0.045	0.00			
0	1.5	0.015	0.00			
Р	1.4	0.014	0.10			
Q	0.7	0.007	0.05			
R	1.0	0.010	0.05			
S	0.6	0.006	0.05			
Т	0.9	0.009	0.05			
U	0.3	0.003	0.05			
Total	61.9	0.619	0.02			

Table B.2	RORB Reach Details

Reach	Reach Type	Length (km)	Slope (%)	
1	1	0.250		
2	1	0.087		
3	1	0.257		
4	1	0.232		
5	1	0.265		
6	1	0.235		
7	1	0.082		
8	1	0.195		
9	1	0.074		
10	1	0.215		
11	1	0.119		
12	1	0.289		
13	1	0.148		
14	1	0.215		
15	1	0.164		
16	1	0.116		
17	1	0.538		
18	1	0.250		
19	1	0.252		
20	1	0.232		
21	1	0.095		
22	1	0.219		
23	1	0.215		
24	1	0.211		
25	1	0.140		
26	1	0.144		
27	1	0.133		
28	1	0.115		
29	1	0.051		
30	1	0.076		
31	1	0.067		

B.1.2 Model Parameters, Inputs and Validation

Identical parameters and inputs to the model developed as part of the 2018 Wetland Design Report have been adopted, including utilising the ARR 2019 datahub inputs for the location 38.273S, 145.564 E (accessed: 18/12/2017).

 Table B.3
 RORB pre-development parameters

kc	d _{av} (km)	k _c /d _{av}	m	IL (mm)	Other Loss
1.08	0.73	1.47	0.8	15.0	RoC _{1%} = 0.6

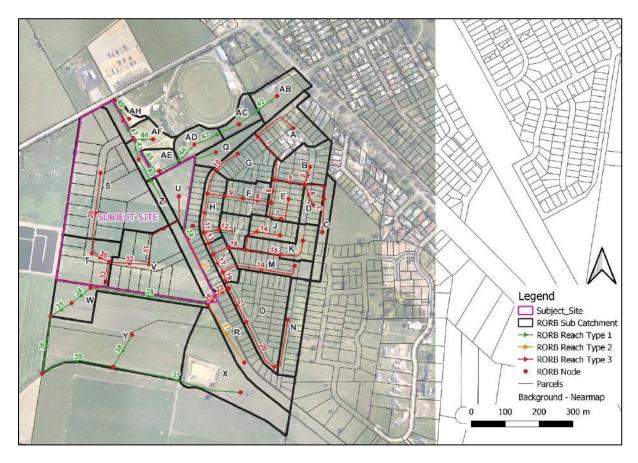
It is assumed that the validation performed within the 2018 Wetland Design Report is applicable herein.

Appendix B – Hydrologic Modelling and Design

B.1.3 Model Results

The 1% AEP pre-development results are:

Flow towards Adams Creek (south)


Flow towards Westernport Road (north)

= 2.15 m³/s (2-hour duration); and = 0.25 m³/s (1.5-hour duration).

B.2 Post-development Modelling

B.2.1 Model Description

A post-development model has been developed as per Figure B.2, Table B.4 and Table B.5.

Figure B.2 Post-development RORB model

RORB Reach Details

Appendix B – Hydrologic Modelling and Design

Table B.5

RORB Sub-Catchment

Table B.4

	Details			
Sub Area	Area (ha)	Area (km²)	Fimp	
А	2.0	0.020	0.65	
В	1.6	0.016	0.65	
С	0.9	0.009	0.65	
D	0.7	0.007	0.65	
Е	1.1	0.011	0.65	
F	1.3	0.013	0.65	
G	1.7	0.017	0.65	
Н	1.2	0.012	0.65	
I	0.8	0.008	0.65	
J	0.9	0.009	0.65	
К	1.3	0.013	0.65	
L	0.8	0.008	0.65	
М	1.3	0.013	0.65	
Ν	1.6	0.016	0.65	
0	3.4	0.034	0.65	
Р	1.6	0.016	0.65	
Q	0.9	0.009	0.05	
R	3.5	0.035	0.65	
S	7.4	0.074	0.90	
Т	2.2	0.022	0.90	
U	1.2	0.012	0.90	
V	4.1	0.041	0.90	
W	1.8	0.018	0.10	
Х	4.4	0.044	0.00	
Y	8.1	0.081	0.00	
Z	0.4	0.004	0.60	
AA	0.4	0.004	0.60	
AB	1.4	0.014	0.10	
AC	0.7	0.007	0.05	
AD	1.0	0.010	0.05	
AE	0.6	0.006	0.05	
AF	0.8	0.008	0.05	
AG	0.4	0.004	0.60	
AH	0.3	0.003	0.05	
Total	61.9	0.619	0.51	

Reach	Reach Type	Length (km)	Slope (%)	
1	3	0.297	0.91%	
2	3	0.054	1.66%	
3	3	0.197	0.81%	
4	3	0.064	0.94%	
5	3	0.090	1.66%	
6	3	0.067	0.33%	
7	3	0.151	0.86%	
8	3	0.085	0.35%	
9	3	0.105	0.47%	
10	3	0.153	0.39%	
10	3	0.135	0.34%	
12	3	0.089	0.68%	
	3	1	0.08%	
13		0.070		
14	3	0.139	0.86%	
15	3	0.204	1.47%	
16	3	0.101	0.40%	
17	3	0.060	0.33%	
18	3	0.239	0.75%	
19	3	0.051	0.33%	
20	3	0.317	0.47%	
21	3	0.113	0.36%	
22	3	0.047	0.33%	
23	3	0.040	0.33%	
24	1	0.308		
25	2	0.187	0.33%	
26	3	0.033	0.33%	
27	2	0.202	0.33%	
28	1	0.350		
29	3	0.240	0.33%	
30	3	0.058	0.34%	
31	3	0.251	0.33%	
32	3	0.117	0.33%	
33	3	0.118	0.33%	
34	1	0.072	0.0070	
35	1	0.072		
36	1	0.073		
	1			
37	1	0.385		
38		0.110		
39	1	0.220		
40	1	0.146		
41	1	0.062		
42	1	0.140		
43	1	0.144		
44	1	0.133		
45	1	0.127		
46	1	0.059		
47	1	0.062		
48	1	0.067		
49	1	0.072		

B.2.2 Model Parameters, Inputs and Validation

The same model parameters and inputs as per Appendix B.1.2 have been adopted. The only change is to the K_c value (now 1.13) which has changed to retain the same K_c/d_{av} ratio between the two scenarios.

B.2.3 Retarding Basin Simulation

The retarding basin as per the 2018 Wetland Design Report has been simulated as per the relationship shown in Table B.6.

Stage (m AHD)	Storage (m ³)	Discharge (m³/s)
6.50	0	0.000
6.80	3779	0.025
6.90	5144	0.026
7.00	6562	0.134
7.10	8031	0.326
7.20	9552	0.571
7.30	11122	0.856
7.40	12738	1.127
7.50	14377	2.867

B.2.4 Model Results

Table B.7 compares the post-development to the pre-development 1% AEP flow estimates.

Table B.7	post-development 1% AEP Flow Estimates
-----------	--

Scenario	Pre-development (Modelling Herein)	Post-Development (2018 Wetland Design Report)	Post-Development (Modelling Herein)	
Total Wetland Inflow	N/A	5.15 m ³ /s (20-minute)	4.85 m ³ /s (20-minute)	
Total Flow Towards Adams Creek	2.15 m³/s (2-hour)	2.05 m³/s (3-hour)	1.75 m ³ /s (4.5-hour)	
Total Flow towards Westernport Road	0.25 m ³ /s (1.5-hour)	N/A	0.30 m ³ /s (1.5-hour)	

Note: All flow estimates are rounded to the nearest 0.05 m³/s and are taken as the mean for the critical duration.

As can be seen:

- The modelling herein is generally consistent with the modelling undertaken as part of the 2018 Wetland Design Report;
- The post-development flow estimates towards Adams Creek are below the pre-development flow estimates;
- The post-development flow estimates towards Westernport Rd are increased by 0.05 m³/s. Appendix C shows that this small increase has no detrimental downstream impact.

Appendix C Westernport Rd Table Drain Capacity

Speedie Development Consultants are proposing to send approximately 1.20 ha of the land which is to become the bypass road towards Westernport Rd. As per Appendix B, this increased the 1% AEP flow expected within the roadside drain from 0.25 m³/s to 0.30 m³/s.

Figure C.1 shows the existing form of this drain. From LiDAR information and Site Visit observations, the table drain is estimated as a trapezoid with 1V:3H batters, a 1V:400H longitudinal grade, 0.6 metres depth, a 0.5 metre base width and a Mannings n of 0.05.

Figure C.1 Existing Westernport Road Table Drain

Table C.1 shows that the increase in 1% AEP flow rate of 0.05 m³/s only increases the expected flood depth in the table drain by 0.03 metres. With the increase, there is still in the order of 150 mm freeboard to Westernport Road.

Thus, it is deemed that there are no detrimental downstream impacts due to the Speedie Development Consultants proposal to send approximately 1.20 ha of bypass road towards Westernport Rd.

Appendix C – Westernport Rd Table Drain Capacity

Table C.1 Westernport Road Table Drain Capacity Estimate

Capacity Estimate -	Mannings	Pre	Post	
Longitudinal Slope =	s =	0.0025	0.0025	m/m
Mannings n	n =	0.05	0.05	
Base Width =	W =	0.50	0.50	m
Water Depth =	0.40	0.43	m	
Side Slopes =	SS = 1V: x H =	3.00	3.00	
Top Width =	TW = W + SS × 2 × D =	2.90	3.08	m
Area =	$A = D \times (SS \times D + W) =$	0.68	0.77	m ²
Wetted Perimeter =	$WP = W + 2 \times ((SS \times D)^2 + D^2)^{0.5} =$	3.03	3.22	m
Hydraulic Radius =	0.22	0.24	m	
Velocity =	y = $V = (R^{2/3} \times s^{0.5}) / n =$			m/s
Capacity =	Capacity = Q = A × V =			

Appendix D Hydraulic Capacity

Using the Rational Method methodology from the EDCM, the total design flow estimates from the Subject Land into the wetland have been estimated as per Table D.1. It is noted that the flow estimates in Table D.1 match well with the RORB modelling estimates generated from the modelling in Appendix B.

From Table D.1, the 1% AEP gap flow is estimated as 1.55 m³/s.

 Table D.1
 Design Flow Estimates from the Subject Land into the Wetland

AEP	A (ha)	Fimp	C _{10%}	CAEP	A₀ = A x C (ha)	∑A₀ (ha)	Tc (min)	l (mm/hr)	Q (m³/s)
10%	15.00	0.90	0.83	0.83	12.39	12.39	15.0	66.4	2.30
1%	15.00	0.90	0.83	0.99	14.87	14.87	20.0	93.3	3.85

Note: All flow estimates are rounded to the nearest 0.05 m³/s. IFD location = 38.2625 S, 145.5625 E.

D.1 Road Gap Flow Capacities

Within the Subject Land, a 23 metre wide road reserve at 1V:300H is expected to convey the 1% AEP gap flow estimate. The general road profile assumed herein is as per Table D.2, noting that this profile is subject to change through detailed design.

 Table D.2
 Typical 23 metre wide road profile assumed (dimensions in metres)

X	0.00	5.36	5.46	5.50	5.95	11.50	17.05	17.50	17.54	17.64	23.00
Y	0.284	0.150	0.150	0.000	0.040	0.225	0.040	0.000	0.150	0.150	0.284

Figure D.1 shows a output from the PcConvey software package showing that the road profile can suitably convey the 1.55 m³/s 1% AEP gap flow estimate with:

- A maximum depth of 0.27 m (DELWP Flood Guidelines Safety Limits ≤ 0.50 m);
- A maximum velocity of 0.65 m/s (DELWP Flood Guidelines Safety Limits ≤ 2.00 m/s); and
- A maximum hazard of 0.18 m²/s (DELWP Flood Guidelines Safety Limits ≤ 0.40 m²/s).

Appendix D – Hydraulic Capacities

WSEL (m)	Q (m^3/s)	V Ave (m/s)	D Max (m)	D Max x V Ave	Fr. No.	AREA (m^2)	WP (m)	FW (m)	HR (m)	Comp n	Split Flow?	
0.280	1.75	0.67	0.28	0.19	0.64	2.59	22.9	22.7	0.1	0.020	No	
0.270	1.54	0.65	0.27	0.18	0.63	2.37	22.1	21.9	0.1	0.020	No	
0.260	1.35	0.63	0.26	0.16	0.63	2.15	21.3	21.1	0.1	0.020	No	
0.250	1.17	0.60	0.25	0.15	0.62	1.95	20.5	20.3	0.1	0.020	No	
0.240	1.00	0.57	0.24	0.14	0.61	1.75	19.7	19.5	0.1	0.020	No	
0.230	0.85	0.55	0.23	0.13	0.60	1.56	18.9	18.7	0.1	0.020	No	
0.220	0.72	0.52	0.22	0.12	N/A	1.37	17.8	17.6	0.1	N/A	Yes	
0.210	0.61	0.51	0.21	0.11	N/A	1.20	16.4	16.2	0.1	N/A	Yes	
0.200	0.51	0.49	0.20	0.10	N/A	1.05	15.0	14.8	0.1	N/A	Yes	
Definitions		ove Text		Re-calcul	ate at grae		300	1:1	scale	Co	ntrol Panel	
				Ne-carcu	ate at grad			1:1	scale	Co	ntrol Panel	
284 -	1								scale		/	
284	1			5			6		scale		/	
284 -		3							scale		/	

Figure D.1 1% AEP Road Gap Flow Capacity

D.2 Drainage Reserve Capacity

The Speedie Development Layout nominates a 12 metre wide, 70 metre long drainage reserve to convey 1% AEP gap flows from the road system towards the wetland reserve.

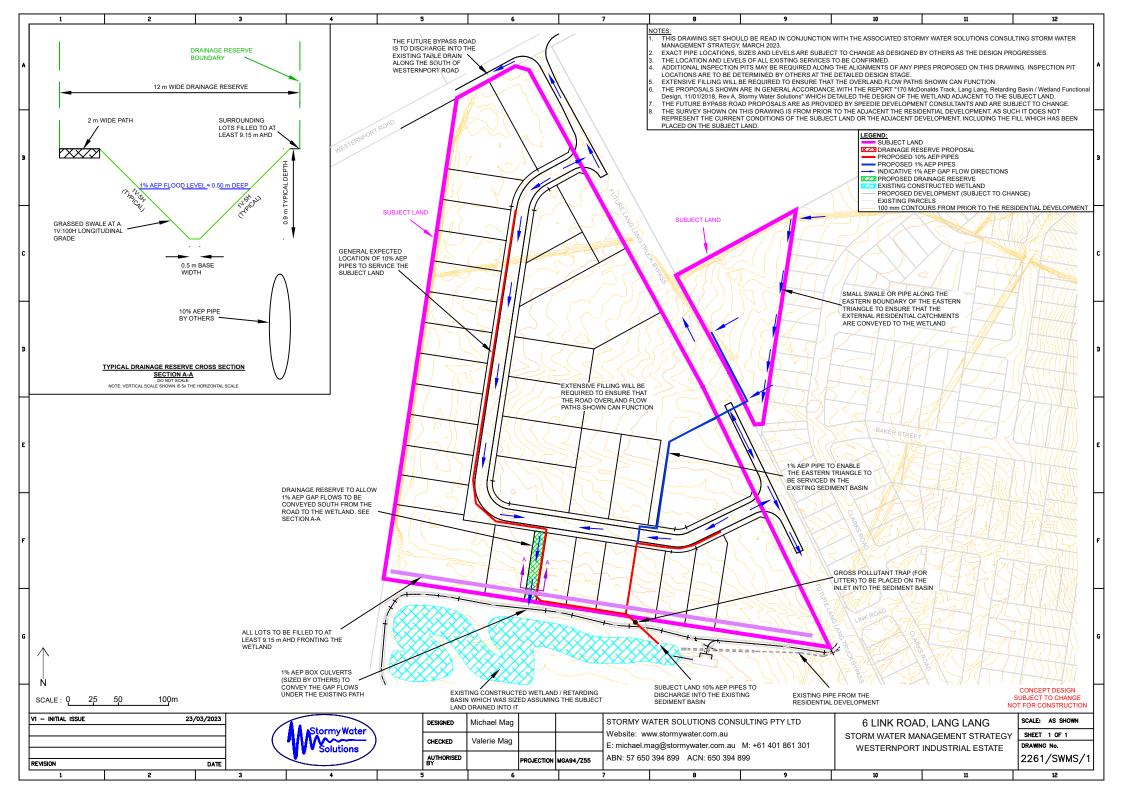
At this stage, within the reserve there is assumed:

- A 2 metre wide path; and
- A grassed swale (0.5 m base, 1V:5H batters, 1V:100H longitudinal grade).

The typical section of this reserve is provided in Table D.3.

Table D.3	Typical drainage reserve road profile assumed (dimensions in metres)
-----------	--

Χ	0.0	2.0	6.5	7.0	11.5	12.0
Y	0.90	0.90	0.00	0.00	0.90	0.90


Figure D.2 shows that this reserve proposal is able to convey the 1% AEP gap flow estimate with at least 300 mm freeboard to the surrounding lots.

Appendix D – Hydraulic Capacities

WSEL	Q	V Ave	D Ave	D Ave	Fr.	AREA	WP	FW	HR	Comp	Split
(m)	(m^3/s)	(m/s)	(m)	x V Ave	No.	(m^2)	(m)	(m)	(m)	n	Flow?
0.500	1.78	1.19	0.27	0.32	0.73	1.50	5.6	5.5	0.3	0.035	No
0.490	1.70	1.17	0.27	0.31	0.72	1.45	5.5	5.4	0.3	0.035	No
0.480	1.61	1.16	0.26	0.30	0.72	1.39	5.4	5.3	0.3	0.035	No
0.470	1.53	1.14	0.26	0.29	0.72	1.34	5.3	5.2	0.3	0.035	No
0.460	1.45	1.13	0.25	0.28	0.72	1.29	5.2	5.1	0.2	0.035	No
0.450	1.38	1.11	0.25	0.28	0.71	1.24	5.1	5.0	0.2	0.035	No
0.440	1.31	1.10	0.24	0.27	0.71	1.19	5.0	4.9	0.2	0.035	No
0.430	1.23	1.08	0.24	0.26	0.71	1.14	4.9	4.8	0.2	0.035	No
0.420	1.17	1.07	0.23	0.25	0.71	1.09	4.8	4.7	0.2	0.035	No
.900 -											
).720 -											5
.540 —				2					4		
.360 -				-					_		
.180 —											
.000 0.000	1.200	2.400	3.600) 4.	300	6.000	7.200	8.400	9.6	00 10.	800 12.0

Figure D.2 1% AEP Reserve Gap Flow Capacity

